|
|
Non-Isothermal Crystallization Kinetics of Fe76Ga5Ge5B6P7Cu1 Alloy |
GUO Lu1,2, ZHU Qianke1,2( ), CHEN Zhe1,2, ZHANG Kewei1,2( ), JIANG Yong1,2 |
1.School of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China 2.Shanxi Province Key Laboratory of Magnetic and Electric Functional Materials and Their Applications, Taiyuan University of Science and Technology, Taiyuan 030024, China |
|
Cite this article:
GUO Lu, ZHU Qianke, CHEN Zhe, ZHANG Kewei, JIANG Yong. Non-Isothermal Crystallization Kinetics of Fe76Ga5Ge5B6P7Cu1 Alloy. Acta Metall Sin, 2022, 58(6): 799-806.
|
Abstract Fe-based amorphous and nanocrystalline alloys can be used for technological applications on iron core materials owing to their high permeability, low coercivity, and core loss. However, when compared to Si-steels, their application is limited owing to low saturation magnetization. Thus, the saturation magnetization of Fe-based amorphous and nanocrystalline alloys should be improved, which may reduce the content of metalloid elements, and thus, the amorphous forming ability. Consequently, as-spun Fe-based amorphous and nanocrystalline alloys with high saturation magnetization may be incompletely amorphous. In this case, annealing processes should be modified by investigating crystallization behavior because traditional annealing processes with low heating rates may degrade ferromagnetic exchange and soft magnetic properties owing to grain-size inhomogeneity. Fe76Ga5Ge5B6P7Cu1 ribbons were fabricated using the melt spinning technique, and their crystallization behavior and mechanism were studied. Results showed that two exothermic peaks are present in the DSC curve, which correspond to the precipitation of α-Fe(Ga, Ge) and Fe(B, P) phases. Under nonisothermal conditions, the initial activation energy is greater than the apparent activation energy. According to the Johnson-Mehl-Avrami-Kolmogorov (JMAK) equation, for an incomplete amorphous alloy, the crystallization process combines the growth of pre-existing nucleus and nucleation, whereas the nucleation rate decreases. Moreover, a rapid heating annealing process is conducive to the formation of a uniform and dispersed nanocrystalline structure. It was found that the magnetic properties of the annealed alloy with a heating rate of 100 K/min was better than those with 10 and 50 K/min. Further, the optimal initial permeability was 2.86 × 10-2 H/m, and the coercivity was 1.77 A/m.
|
Received: 12 July 2021
|
|
Fund: Shanxi Scholarship Council of China(HGKY2019083);Key Research and Development Program of Shanxi Province(201803D421046);Scientific and Technologial Innovation Programs of Higher Education Institutions in Shanxi(2021L293);Reward Fund for Outstanding Doctor in Shanxi(20212045);Doctoral Startup Foundation of Taiyuan University of Science and Technology(20202034) |
About author: ZHANG Kewei, professor, Tel: (0351)2161126, E-mail: drzkw@126.comZHU Qianke, Tel: (0351)2161126, E-mail: drzhuqianke@126.com
|
1 |
Yoshizawa Y, Yamauchi K. Fe-based soft magnetic alloys composed of ultrafine grain structure [J]. Mater. Trans. JIM, 1990, 31: 307
|
2 |
Makino A. Nanocrystalline soft magnetic Fe-Si-B-P-Cu alloys with high B of 1.8-1.9 T contributable to energy saving [J]. IEEE Trans. Magn., 2012, 48: 1331
|
3 |
Yoshizawa Y, Oguma S, Yamauchi K. New Fe-based soft magnetic alloys composed of ultrafine grain structure [J]. J. Appl. Phys., 1988, 64: 6044
doi: 10.1063/1.342149
|
4 |
Fukamichi K, Satoh T, Masumoto T. Magnetic moment of Fe-Ga-B amorphous Alloys [J]. J. Magn. Magn. Mater., 1983, 31-34: 1589
doi: 10.1016/0304-8853(83)91027-2
|
5 |
Zhu Q K, Chen Z, Li Q S, et al. Microstructure and phase dependence of magnetic softness of FeSiGaB nanocrystalline alloys [J]. J. Magn. Magn. Mater., 2021, 528: 167802
doi: 10.1016/j.jmmm.2021.167802
|
6 |
Sharma P, Zhang X, Zhang Y, et al. Competition driven nanocrystallization in high Bs and low coreloss Fe-Si-B-P-Cu soft magnetic alloys [J]. Scr. Mater., 2015, 95: 3
doi: 10.1016/j.scriptamat.2014.08.023
|
7 |
Zhang J H, Wan F P, Li Y C, et al. Effect of surface crystallization on magnetic properties of Fe82Cu1Si4B11.5Nb1.5 nanocrystalline alloy ribbons [J]. J. Magn. Magn. Mater., 2017, 438: 126
doi: 10.1016/j.jmmm.2017.04.086
|
8 |
Li H, Wang A D, Liu T, et al. Design of Fe-based nanocrystalline alloys with superior magnetization and manufacturability [J]. Mater. Today, 2021, 42: 49
doi: 10.1016/j.mattod.2020.09.030
|
9 |
Chen Z, Zhu Q K, Li Z E, et al. Effects of Si/B ratio on the isothermal crystallization behavior of FeNiSiBCuNb amorphous alloys [J]. Thermochim. Acta, 2021, 697: 178854
doi: 10.1016/j.tca.2020.178854
|
10 |
Zhang J T, Wang W M, Ma H J, et al. Isochronal and isothermal crystallization kinetics of amorphous Fe-based alloys [J]. Thermochim. Acta, 2010, 505: 41
doi: 10.1016/j.tca.2010.03.023
|
11 |
Henderson D W. Thermal analysis of non-isothermal crystallization kinetics in glass forming liquids [J]. J. Non-Cryst. Solids, 1979, 30: 301
doi: 10.1016/0022-3093(79)90169-8
|
12 |
Pratap A, Lad K N, Rao T L S, et al. Kinetics of crystallization of amorphous Cu50Ti50 alloy [J]. J. Non-Cryst. Solids, 2004, 345-346: 178
doi: 10.1016/j.jnoncrysol.2004.08.018
|
13 |
Jin J S, Li F W, Yin G, et al. Influence of substitution of Cu by Ni on the crystallization kinetics of TiZrHfBeCu high entropy bulk metallic glass [J]. Thermochim. Acta, 2020, 690: 178650
doi: 10.1016/j.tca.2020.178650
|
14 |
Paul T, Loganathan A, Agarwal A, et al. Kinetics of isochronal crystallization in a Fe-based amorphous alloy [J]. J. Alloys Compd., 2018, 753: 679
doi: 10.1016/j.jallcom.2018.04.133
|
15 |
Dong Q, Song P, Tan J, et al. Non-isothermal crystallization kinetics of a Fe-Cr-Mo-B-C amorphous powder [J]. J. Alloys Compd., 2020, 823: 153783
doi: 10.1016/j.jallcom.2020.153783
|
16 |
Zhu Q K, Chen Z, Zhang S L, et al. Improving soft magnetic properties in FINEMET-like alloys with Ga addition [J]. J. Magn. Magn. Mater., 2019, 487: 165297
doi: 10.1016/j.jmmm.2019.165297
|
17 |
Fan X D, Jiang M F, Zhang T, et al. Thermal, structural and soft magnetic properties of FeSiBPCCu alloys [J]. J. Non-Cryst. Solids, 2020, 533: 119941
doi: 10.1016/j.jnoncrysol.2020.119941
|
18 |
Chen F G, Wang Y G. Investigation of glass forming ability, thermal stability and soft magnetic properties of melt-spun Fe83P16 - x Si x -Cu1 (x = 0, 1, 2, 3, 4, 5) alloy ribbons [J]. J. Alloys Compd., 2014, 584: 377
doi: 10.1016/j.jallcom.2013.09.089
|
19 |
Lopatina E, Soldatov I, Budinsky V, et al. Surface crystallization and magnetic properties of Fe84.3Cu0.7Si4B8P3 soft magnetic ribbons [J]. Acta Mater., 2015, 96: 10
doi: 10.1016/j.actamat.2015.05.051
|
20 |
Kong L H, Gao Y L, Song T T, et al. Non-isothermal crystallization kinetics of FeZrB amorphous alloy [J]. Thermochim. Acta, 2011, 522: 166
doi: 10.1016/j.tca.2011.02.013
|
21 |
Zhu Q K, Chen Z, Zhang S L, et al. Crystallization progress and soft magnetic properties of FeGaBNbCu alloys [J]. J. Magn. Magn. Mater., 2019, 475: 88
doi: 10.1016/j.jmmm.2018.11.105
|
22 |
Li W, Xie C X, Liu H Y, et al. Minor-metalloid substitution for Fe on glass formation and soft magnetic properties of Fe-Co-Si-B-P-Cu alloys [J]. J. Non-Cryst. Solids, 2020, 533: 119937
doi: 10.1016/j.jnoncrysol.2020.119937
|
23 |
Wang R W, Liu J, Xu Y P, et al. Effect of V substitution for Nb on the crystallization kinetics of FINEMET amorphous alloys [J]. J. Funct. Mater., 2010, 12: 2109
|
|
汪汝武, 刘 静, 徐勇攀 等. V替代Nb对FINEMET非晶合金结晶动力学的影响 [J]. 功能材料, 2010, 12: 2109
|
24 |
Lasocka M. The effect of scanning rate on glass transition temperature of splat-cooled Te85Ge15 [J]. Mater. Sci. Eng., 1976, 23: 173
doi: 10.1016/0025-5416(76)90189-0
|
25 |
Kissinger H E. Reaction kinetics in differential thermal analysis [J]. Anal. Chem., 1957, 29: 1702
doi: 10.1021/ac60131a045
|
26 |
Ozawa T. Kinetic analysis of derivative curves in thermal analysis [J]. J. Therm. Anal., 1970, 2: 301
doi: 10.1007/BF01911411
|
27 |
Nakamura K, Katayama K, Amano T. Some aspects of nonisothermal crystallization of polymers. II. Consideration of the isokinetic condition [J]. J. Appl. Polym. Sci., 1973, 17: 1031
doi: 10.1002/app.1973.070170404
|
28 |
Blázquez J S, Conde C F, Conde A. Non-isothermal approach to isokinetic crystallization processes: Application to the nanocrystallization of HITPERM alloys [J]. Acta Mater., 2005, 53: 2305
doi: 10.1016/j.actamat.2005.01.037
|
29 |
Chen Z, Zhu Q K, Zhang K W, et al. The non-isothermal and isothermal crystallization behavior and mechanism of Fe-Ni Alloys [J]. Cryst. Growth Des., 2020, 20: 2187
doi: 10.1021/acs.cgd.9b01059
|
30 |
Duarte M J, Kostka A, Crespo D, et al. Kinetics and crystallization path of a Fe-based metallic glass alloy [J]. Acta Mater., 2017, 127: 341
doi: 10.1016/j.actamat.2017.01.031
|
31 |
Herzer G. Grain size dependence of coercivity and permeability in nanocrystalline ferromagnets [J]. IEEE Trans. Magn., 1990, 26(5): 1397
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|