Please wait a minute...
Acta Metall Sin  2022, Vol. 58 Issue (11): 1489-1496    DOI: 10.11900/0412.1961.2022.00343
Research paper Current Issue | Archive | Adv Search |
Microstructure and Mechanical Properties of Layered Heterostructured Mg-3Gd Alloy
LUO Xuan1,2, HAN Fang1,2, HUANG Tianlin1,2, WU Guilin3, HUANG Xiaoxu1,2()
1.International Joint Laboratory for Light Alloys (MOE), College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
2.Shenyang National Laboratory for Materials Science, Chongqing University, Chongqing 400044, China
3.Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
Cite this article: 

LUO Xuan, HAN Fang, HUANG Tianlin, WU Guilin, HUANG Xiaoxu. Microstructure and Mechanical Properties of Layered Heterostructured Mg-3Gd Alloy. Acta Metall Sin, 2022, 58(11): 1489-1496.

Download:  HTML  PDF(2347KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

As the lightest structural metallic materials, Mg alloys have immense development potential in the automotive, aerospace, medical, and electronic industries. However, the low strength and the poor ductility of Mg alloys limit their engineering applications. Recent investigations have shown that heterostructured Mg alloys exhibit significantly improved strength and ductility. This work applies accumulative roll-bonding and subsequent annealing to a Mg-3Gd alloy to produce layered heterostructures composed of alternating recovered and recrystallized layers of varying thicknesses. These heterostructures exhibit higher strength than homogeneous grain structures at a similar tensile ductility. They also show a continuous flow behavior desired for metal forming. A high density of the <c + a> dislocations is activated at the interfaces between the layers to accommodate the deformation incompatibility, which contributes to dislocation multiplications and accumulations and enhances work hardening rate and ductility.

Key words:  layered heterostructure      mechanical behavior      deformation mechanism      Mg alloy     
Received:  18 July 2022     
ZTFLH:  TB31  
Fund: National Key Research and Development Program of China(2021YFB3702101);National Na-tural Science Foundation of China(52071038)
About author:  HUANG Xiaoxu, professor, Tel: (023)65127230, E-mail: xiaoxuhuang@cqu.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2022.00343     OR     https://www.ams.org.cn/EN/Y2022/V58/I11/1489

Fig.1  TEM images (a, c) and sketches (b, d) showing a lamellar structure (a, b) and a twin block structure based on the experimental data reported in Ref.[27] (c, d) of the ARB-deformed Mg-3Gd alloy (RD—rolling direction, ND—normal direction, ARB—accumulative roll-bonding, LBs—lamellar boundaries, LAB—low-angle boundary, TB—twin boundary, SF—stacking fault. Inset in Fig.1d shows the corresponding electron diffraction pattern of a deformation twin (T1) and matrix)
Fig.2  SEM image (a), EBSD image (b), and TEM images (c, d) taken from the Mg-3Gd sample partially recrystallized at 290oC showing a layered heterostructure composed of alternating recovered and recrystallized layers of varying thicknesses
Fig.3  Tensile engineering stress-strain curves (a), tensile true stress-strain curves (b), work hardening rate-true strain curves (c), and work hardening rate-true stress curves (d) of the Mg-3Gd alloy with ARB-deformed structure, layered heterostructures (indicated by Hetero), and homogeneous recrystallized grain structures (indicated by Homo) (d—average grain size)
Fig.4  Uniform elongation versus yield strength of Mg-3Gd alloy with different microstructures and average grain sizes
Fig.5  Uniform elongation versus yield strength of AZ31 alloy plotted based on the experimental data reported in Ref.[24]
Fig.6  Dislocation structure analyses of the layered heterostructured Mg-3Gd sample after tensile deformation
(a) bright field TEM image (Red line in Fig.6a shows the interface of recovered area and recrystallized area)
(b) two-beam dark field TEM image with g = [0002] near the [011¯0] zone axis
1 Liu Q. Research progress on plastic deformation mechanism of Mg alloys [J]. Acta Metall. Sin., 2010, 46: 1458
doi: 10.3724/SP.J.1037.2010.00446
刘 庆. 镁合金塑性变形机理研究进展 [J]. 金属学报, 2010, 46: 1458
2 Hono K, Mendis C L, Sasaki T T, et al. Towards the development of heat-treatable high-strength wrought Mg alloys [J]. Scr. Mater., 2010, 63: 710
doi: 10.1016/j.scriptamat.2010.01.038
3 Agnew S R, Duygulu Ö. Plastic anisotropy and the role of non-basal slip in magnesium alloy AZ31B [J]. Int. J. Plast., 2005, 21: 1161
doi: 10.1016/j.ijplas.2004.05.018
4 Shi B D, Yang C, Peng Y, et al. Anisotropy of wrought magnesium alloys: A focused overview [J]. J. Magnes. Alloys, 2022, 10: 1476
doi: 10.1016/j.jma.2022.03.006
5 Nie J F. Precipitation and hardening in magnesium alloys [J]. Metall. Mater. Trans., 2012, 43A: 3891
6 Wang H Y, Xia N, Bu R Y, et al. Current research and future prospect on low-alloyed high-performance wrought magnesium alloys [J]. Acta Metall. Sin., 2021, 57: 1429
doi: 10.11900/0412.1961.2021.00347
王慧远, 夏 楠, 布如宇 等. 低合金化高性能变形镁合金研究现状及展望 [J]. 金属学报, 2021, 57: 1429
doi: 10.11900/0412.1961.2021.00347
7 Fan H D, Aubry S, Arsenlis A, et al. Grain size effects on dislocation and twinning mediated plasticity in magnesium [J]. Scr. Mater., 2016, 112: 50
doi: 10.1016/j.scriptamat.2015.09.008
8 Luo X. Effect of grain size on the mechanical behavior and deformation mechanisms of Mg-3Gd [D]. Chongqing: Chongqing University, 2019
罗 旋. Mg-3Gd合金的力学行为、变形机制和晶粒尺寸效应 [D]. 重庆: 重庆大学, 2019
9 Nie J F. Effects of precipitate shape and orientation on dispersion strengthening in magnesium alloys [J]. Scr. Mater., 2003, 48: 1009
doi: 10.1016/S1359-6462(02)00497-9
10 Yu H H, Li C Z, Xin Y C, et al. The mechanism for the high dependence of the Hall-Petch slope for twinning/slip on texture in Mg alloys [J]. Acta Mater., 2017, 128: 313
doi: 10.1016/j.actamat.2017.02.044
11 Huang X X. Size effects on the strength of metals [J]. Acta Metall. Sin., 2014, 50: 137
doi: 10.3724/SP.J.1037.2014.00016
黄晓旭. 金属强度的尺寸效应 [J]. 金属学报, 2014, 50: 137
doi: 10.3724/SP.J.1037.2014.00016
12 Wu X L, Zhu Y T. Heterogeneous materials: A new class of materials with unprecedented mechanical properties [J]. Mater. Res. Lett., 2017, 5: 527
doi: 10.1080/21663831.2017.1343208
13 Zhu Y T, Ameyama K, Anderson P M, et al. Heterostructured materials: Superior properties from hetero-zone interaction [J]. Mater. Res. Lett., 2021, 9: 1
doi: 10.1080/21663831.2020.1796836
14 Ovid'ko I A, Valiev R Z, Zhu Y T. Review on superior strength and enhanced ductility of metallic nanomaterials [J]. Prog. Mater. Sci., 2018, 94: 462
doi: 10.1016/j.pmatsci.2018.02.002
15 Jin Z Z, Zha M, Wang S Q, et al. Alloying design and microstructural control strategies towards developing Mg alloys with enhanced ductility [J]. J. Magnes. Alloys, 2022, 10: 1191
doi: 10.1016/j.jma.2022.04.002
16 Li S J, Jin J F, Song Y H, et al. Multimodal microstructure of Mg-Gd-Y alloy through an integrated simulation of “process-structure-property” [J]. Acta Metall. Sin., 2022, 58: 114
李少杰, 金剑锋, 宋宇豪 等. “工艺-组织-性能”模拟研究Mg-Gd-Y合金混晶组织 [J]. 金属学报, 2022, 58: 114
doi: 10.11900/0412.1961.2021.00222
17 Wu X L, Yang M X, Yuan F P, et al. Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility [J]. Proc. Natl. Acad. Sci. USA, 2015, 112: 14501
doi: 10.1073/pnas.1517193112
18 Zhang L, Chen Z, Wang Y H, et al. Fabricating interstitial-free steel with simultaneous high strength and good ductility with homogeneous layer and lamella structure [J]. Scr. Mater., 2017, 141: 111
doi: 10.1016/j.scriptamat.2017.06.044
19 Wang Y H, Kang J M, Peng Y, et al. Hall-Petch strengthening in Fe-34.5Mn-0.04C steel cold-rolled, partially recrystallized and fully recrystallized [J]. Scr. Mater., 2018, 155: 41
doi: 10.1016/j.scriptamat.2018.06.019
20 Luo X, Feng Z Q, Yu T B, et al. Transitions in mechanical behavior and in deformation mechanisms enhance the strength and ductility of Mg-3Gd [J]. Acta Mater., 2020, 183: 398
doi: 10.1016/j.actamat.2019.11.034
21 Xu C, Fan G H, Nakata T, et al. Deformation behavior of ultra-strong and ductile Mg-Gd-Y-Zn-Zr alloy with bimodal microstructure [J]. Metall. Mater. Trans., 2018, 49A: 1931
22 Go Y, Jo S M, Park S H, et al. Microstructure and mechanical properties of non-flammable Mg-8Al-0.3Zn-0.1Mn-0.3Ca-0.2Y alloy subjected to low-temperature, low-speed extrusion [J]. J. Alloys Compd., 2018, 739: 69
doi: 10.1016/j.jallcom.2017.12.229
23 Zhang H, Wang H Y, Wang J G, et al. The synergy effect of fine and coarse grains on enhanced ductility of bimodal-structured Mg alloys [J]. J. Alloys Compd., 2019, 780: 312
doi: 10.1016/j.jallcom.2018.11.229
24 Luo X, Huang T L, Wang Y H, et al. Strong and ductile AZ31 Mg alloy with a layered bimodal structure [J]. Sci. Rep., 2019, 9: 5428
doi: 10.1038/s41598-019-41987-4 pmid: 30932008
25 Zheng R X, Bhattacharjee T, Gao S, et al. Change of deformation mechanisms leading to high strength and large ductility in Mg-Zn-Zr-Ca Alloy with fully recrystallized ultrafine grained microstructures [J]. Sci. Rep., 2019, 9: 11702
doi: 10.1038/s41598-019-48271-5 pmid: 31406235
26 Zheng R X, Bhattacharjee T, Shibata A, et al. Simultaneously enhanced strength and ductility of Mg-Zn-Zr-Ca alloy with fully recrystallized ultrafine grained structures [J]. Scr. Mater., 2017, 131: 1
doi: 10.1016/j.scriptamat.2016.12.024
27 Luo X, Feng Z Q, Yu T B, et al. Microstructural evolution in Mg-3Gd during accumulative roll-bonding [J]. Mater. Sci. Eng., 2020, A772: 138763
28 Tsuji N, Ito Y, Saito Y, et al. Strength and ductility of ultrafine grained aluminum and iron produced by ARB and annealing [J]. Scr. Mater., 2002, 47: 893
doi: 10.1016/S1359-6462(02)00282-8
29 Huang X X, Hansen N, Tsuji N. Hardening by annealing and softening by deformation in nanostructured metals [J]. Science, 2006, 312: 249
pmid: 16614217
30 Kamikawa N, Huang X X, Tsuji N, et al. Strengthening mechanisms in nanostructured high-purity aluminium deformed to high strain and annealed [J]. Acta Mater., 2009, 57: 4198
doi: 10.1016/j.actamat.2009.05.017
31 Huang T L, Shuai L F, Wakeel A, et al. Strengthening mechanisms and Hall-Petch stress of ultrafine grained Al-0.3%Cu [J]. Acta Mater., 2018, 156: 369
doi: 10.1016/j.actamat.2018.07.006
32 Gao S, Chen M C, Joshi M, et al. Yielding behavior and its effect on uniform elongation in IF steel with various grain sizes [J]. J. Mater. Sci., 2014, 49: 6536
doi: 10.1007/s10853-014-8233-0
33 Tsuji N, Ogata S, Inui H, et al. Strategy for managing both high strength and large ductility in structural materials—Sequential nucleation of different deformation modes based on a concept of plaston [J]. Scr. Mater., 2020, 181: 35
doi: 10.1016/j.scriptamat.2020.02.001
34 Koike J, Kobayashi T, Mukai T, et al. The activity of non-basal slip systems and dynamic recovery at room temperature in fine-grained AZ31B magnesium alloys [J]. Acta Mater., 2003, 51: 2055
doi: 10.1016/S1359-6454(03)00005-3
35 Jain J, Cizek P, Hariharan K. Transmission electron microscopy investigation on dislocation bands in pure Mg [J]. Scr. Mater., 2017, 130: 133
doi: 10.1016/j.scriptamat.2016.11.035
36 Geng J, Chisholm M F, Mishra R K, et al. An electron microscopy study of dislocation structures in Mg single crystals compressed along [0001] at room temperature [J]. Philos. Mag., 2015, 95: 3910
doi: 10.1080/14786435.2015.1108531
37 Liu B Y, Liu F, Yang N, et al. Large plasticity in magnesium mediated by pyramidal dislocations [J]. Science, 2019, 365: 73
doi: 10.1126/science.aaw2843
38 Wu Z X, Curtin W A. The origins of high hardening and low ductility in magnesium [J]. Nature, 2015, 526: 62
doi: 10.1038/nature15364
39 Ahmad R, Yin B L, Wu Z X, et al. Designing high ductility in magnesium alloys [J]. Acta Mater., 2019, 172: 161
doi: 10.1016/j.actamat.2019.04.019
40 Wu Z X, Ahmad R, Yin B L, et al. Mechanistic origin and prediction of enhanced ductility in magnesium alloys [J]. Science, 2018, 359: 447
doi: 10.1126/science.aap8716 pmid: 29371467
41 Feng Z Q, Fu R, Lin C W, et al. TEM-based dislocation tomography: Challenges and opportunities [J]. Curr. Opin. Solid State Mater. Sci., 2020, 24: 100833
doi: 10.1016/j.cossms.2020.100833
[1] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[3] ZHANG Haifeng, YAN Haile, FANG Feng, JIA Nan. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars[J]. 金属学报, 2023, 59(8): 1051-1064.
[4] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[5] LIU Junpeng, CHEN Hao, ZHANG Chi, YANG Zhigang, ZHANG Yong, DAI Lanhong. Progress of Cryogenic Deformation and Strengthening-Toughening Mechanisms of High-Entropy Alloys[J]. 金属学报, 2023, 59(6): 727-743.
[6] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[7] SHEN Zhao, WANG Zhipeng, HU Bo, LI Dejiang, ZENG Xiaoqin, DING Wenjiang. Research Progress on the Mechanisms Controlling High-Temperature Oxidation Resistance of Mg Alloys[J]. 金属学报, 2023, 59(3): 371-386.
[8] WANG Kai, JIN Xi, JIAO Zhiming, QIAO Junwei. Mechanical Behaviors and Deformation Constitutive Equations of CrFeNi Medium-Entropy Alloys Under Tensile Conditions from 77 K to 1073 K[J]. 金属学报, 2023, 59(2): 277-288.
[9] GONG Xiangpeng, WU Cuilan, LUO Shifang, SHEN Ruohan, YAN Jun. Effect of Natural Aging on Artificial Aging of an Al-2.95Cu-1.55Li-0.57Mg-0.18Zr Alloy at 160oC[J]. 金属学报, 2023, 59(11): 1428-1438.
[10] PENG Liming, DENG Qingchen, WU Yujuan, FU Penghuai, LIU Ziyi, WU Qianye, CHEN Kai, DING Wenjiang. Additive Manufacturing of Magnesium Alloys by Selective Laser Melting Technology: A Review[J]. 金属学报, 2023, 59(1): 31-54.
[11] FENG Di, ZHU Tian, ZANG Qianhao, LEE Yunsoo, FAN Xi, ZHANG Hao. Solution Behavior of Spray-Formed Hypereutectic AlSiCuMg Alloy[J]. 金属学报, 2022, 58(9): 1129-1140.
[12] WU Caihong, FENG Di, ZANG Qianhao, FAN Shichun, ZHANG Hao, LEE Yunsoo. Microstructure Evolution and Recrystallization Behavior During Hot Deformation of Spray Formed AlSiCuMg Alloy[J]. 金属学报, 2022, 58(7): 932-942.
[13] ZHANG Jinyu, QU Qimeng, WANG Yaqiang, WU Kai, LIU Gang, SUN Jun. Research Progress on Irradiation Effects and Mechanical Properties of Metal/High-Entropy Alloy Nanostructured Multilayers[J]. 金属学报, 2022, 58(11): 1371-1384.
[14] WANG Kaidong, LIU Yunzhong, ZHAN Qiangkun, HUANG Bin. Effect of Adding Methods of Nucleating Agent on Microstructure and Mechanical Properties of Zr Modified Al-Cu-Mg Alloys Prepared by Selective Laser Melting[J]. 金属学报, 2022, 58(10): 1281-1291.
[15] CAO Furong, DING Xin, XIANG Chao, SHANG Huihui. Flow Stress, Microstructural Evolution, and Constitutive Analysis During High-Temperature Deformation in Mg-4.4Li-2.5Zn-0.46Al-0.74Y Alloy[J]. 金属学报, 2021, 57(7): 860-870.
No Suggested Reading articles found!