|
|
Design for Thermal Stability of Nanocrystalline Alloys Based on High-Entropy Effects |
WANG Yihan, YUAN Yuan, YU Jiabin, WU Honghui, WU Yuan( ), JIANG Suihe, LIU Xiongjun, WANG Hui( ), LU Zhaoping |
State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China |
|
Cite this article:
WANG Yihan, YUAN Yuan, YU Jiabin, WU Honghui, WU Yuan, JIANG Suihe, LIU Xiongjun, WANG Hui, LU Zhaoping. Design for Thermal Stability of Nanocrystalline Alloys Based on High-Entropy Effects. Acta Metall Sin, 2021, 57(4): 403-412.
|
Abstract Nanocrystalline alloys (NAs) with nano-sized fine grains and high density of grain boundaries exhibit promising properties, such as high strength and hardness. However, industrial applications of NAs at high or even room temperature have been limited, owing to their thermal instability, which originates from the high proportion of grain boundaries in NAs. Recently, nanocrystalline high-entropy alloys (NC-HEAs) have emerged and have been rapidly developed, which are expected to alleviate thermal instability. In this study, design strategies for the thermal stability of NC-HEAs and related progress are investigated and summarized. In addition, the underlying mechanism for the high thermal stability of NC-HEAs is discussed by utilizing high-entropy effects, based on entropy engineering. These high-entropy design strategies may provide a new methodology for dramatically increasing the thermal stability of NAs.
|
Received: 07 December 2020
|
|
Fund: National Natural Science Foundation of China(51921001);the Project of State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing(2019Z-01) |
About author: WANG Hui, associate professor, Tel: (010)62332246, E-mail: wanghui@ustb.edu.cn WU Yuan, professor, Tel: (010)62332246, E-mail: wuyuan@ustb.edu.cn
|
1 |
Chookajorn T, Murdoch H A, Schuh C A. Design of stable nanocrystalline alloys [J]. Science, 2012, 337: 951
|
2 |
Gleiter H. Nanostructured materials: Basic concepts and microstructure [J]. Acta Mater., 2000, 48: 1
|
3 |
Suryanarayana C, Koch C C. Nanocrystalline materials—Current research and future directions [J]. Hyperfine Interact., 2000, 130: 5
|
4 |
Belova I V, Murch G E. Diffusion in nanocrystalline materials [J]. J. Phys. Chem. Solids, 2003, 64: 873
|
5 |
Palumbo G, Thorpe S J, Aust K T. On the contribution of triple junctions to the structure and properties of nanocrystalline materials [J]. Scr. Metall. Mater., 1990, 24: 1347
|
6 |
Cantwell P R, Tang M, Dillon S J, et al. Grain boundary complexions [J]. Acta Mater., 2014, 62: 1
|
7 |
Ames M, Markmann J, Karos R, et al. Unraveling the nature of room temperature grain growth in nanocrystalline materials [J]. Acta Mater., 2008, 56: 4255
|
8 |
Cantor B, Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys [J]. Mater. Sci. Eng., 2004, A375-377: 213
|
9 |
Tsai M H, Yeh J W. High-entropy alloys: A critical review [J]. Mater. Res. Lett., 2014, 2: 107
|
10 |
Zhang Y, Zuo T T, Tang Z, et al. Microstructures and properties of high-entropy alloys [J]. Prog. Mater. Sci., 2014, 61: 1
|
11 |
Wu P H, Liu N, Yang W, et al. Microstructure and solidification behavior of multicomponent CoCrCuxFeMoNi high-entropy alloys [J]. Mater. Sci. Eng., 2015, A642: 142
|
12 |
Zhou Y J, Zhang Y, Wang F J, et al. Phase transformation induced by lattice distortion in multiprincipal component CoCrFeNiCuxAl1-xsolid-solution alloys [J]. Appl. Phys. Lett., 2008, 92: 241917
|
13 |
Tsai K Y, Tsai M H, Yeh J W. Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys [J]. Acta Mater., 2013, 61: 4887
|
14 |
Lu Z P, Wang H, Chen M W, et al. An assessment on the future development of high-entropy alloys: Summary from a recent workshop [J]. Intermetallics, 2015, 66: 67
|
15 |
Gludovatz B, Hohenwarter A, Catoor D, et al. A fracture-resistant high-entropy alloy for cryogenic applications [J]. Science, 2014, 345: 1153
|
16 |
Laktionova M A, Tabchnikova E D, Tang Z, et al. Mechanical properties of the high-entropy alloy Ag0.5CoCrCuFeNi at temperatures of 4.2-300 K [J]. J. Low Temp. Phys., 2013, 39: 630
|
17 |
Kuznetsov A V, Shaysultanov D G, Stepanov N D, et al. Tensile properties of an AlCrCuNiFeCo high-entropy alloy in as-cast and wrought conditions [J]. Mater. Sci. Eng., 2012, A533: 107
|
18 |
Senkov O N, Wilks G B, Scott J M, et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys [J]. Intermetallics, 2011, 19: 698
|
19 |
Haché M J R, Cheng C J, Zou Y. Nanostructured high-entropy materials [J]. J. Mater. Res., 2020, 35: 1051
|
20 |
Koch C C, Scattergood R O, Saber M, et al. High temperature stabilization of nanocrystalline grain size: Thermodynamic versus kinetic strategies [J]. J. Mater. Res., 2013, 28: 1785
|
21 |
Gottstein G, Shvindlerman L S. Grain Boundary Migration in Metals: Thermodynamics, Kinetics, Applications [M]. 2nd Ed., Boca Raton, FL: CRC Press, 2010: 1
|
22 |
Weissmüller J. Alloy effects in nanostructures [J]. Nanostruct. Mater., 1993, 3: 261
|
23 |
Liu F, Kirchheim R. Nano-scale grain growth inhibited by reducing grain boundary energy through solute segregation [J]. J. Cryst. Growth, 2004, 264: 385
|
24 |
Hondros E D, Seah M P. The theory of grain boundary segregation in terms of surface adsorption analogues [J]. Metall. Trans., 1977, 8A: 1363
|
25 |
Chen Y Z, Herz A, Li Y J, et al. Nanocrystalline Fe-C alloys produced by ball milling of iron and graphite [J]. Acta Mater., 2013, 61: 3172
|
26 |
Kirchheim R. Grain coarsening inhibited by solute segregation [J]. Acta Mater., 2002, 50: 413
|
27 |
Lei Z F, Liu X J, Wang H, et al. Development of advanced materials via entropy engineering [J]. Scr. Mater., 2019, 165: 164
|
28 |
He J Y, Wang H, Huang H L, et al. A precipitation-hardened high-entropy alloy with outstanding tensile properties [J]. Acta Mater., 2016, 102: 187
|
29 |
He J Y, Liu W H, Wang H, et al. Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system [J]. Acta Mater., 2014, 62: 105
|
30 |
Deng H W, Xie Z M, Wang M M, et al. A nanocrystalline AlCoCuNi medium-entropy alloy with high thermal stability via entropy and boundary engineering [J]. Mater. Sci. Eng., 2020, A774: 138925
|
31 |
Xiao L L, Zheng Z Q, Guo S W, et al. Ultra-strong nanostructured CrMnFeCoNi high entropy alloys [J]. Mater. Des., 2020, 194: 108895
|
32 |
Cahn J W. The impurity-drag effect in grain boundary motion [J]. Acta Metall., 1962, 10: 789
|
33 |
Lücke K, Detert K. A quantitative theory of grain-boundary motion and recrystallization in metals in the presence of impurities [J]. Acta Metall., 1957, 5: 628
|
34 |
Michels A, Krill C E, Ehrhardt H, et al. Modelling the influence of grain-size-dependent solute drag on the kinetics of grain growth in nanocrystalline materials [J]. Acta Mater., 1999, 47: 2143
|
35 |
Rabkin E. On the grain size dependent solute and particle drag [J]. Scr. Mater., 2000, 42: 1199
|
36 |
Humphreys F J, Hatherly M. Recrystallization and Related Annealing Phenomena [M]. 2nd Ed., Oxford: Pergamon, 2004: 557
|
37 |
Rupp J L M, Infortuna A, Gauckler L J. Microstrain and self-limited grain growth in nanocrystalline ceria ceramics [J]. Acta Mater., 2006, 54: 1721
|
38 |
Tao J M, Zhu X K, Scattergood R O, et al. The thermal stability of high-energy ball-milled nanostructured Cu [J]. Mater. Des., 2013, 50: 22
|
39 |
Zuo B, Sritharan T. Ordering and grain growth in nanocrystalline Fe75Si25 alloy [J]. Acta Mater., 2005, 53: 1233
|
40 |
Bansal C, Gao Z Q, Fultz B. Grain growth and chemical ordering in (Fe, Mn)3Si [J]. Nanostruct. Mater., 1995, 5: 327
|
41 |
Cottrell A H, Jaswon M A. Distribution of solute atoms round a slow dislocation [J]. Proc. R. Soc. London, 1949, 199A: 104
|
42 |
Hillert M, Sundman B. A treatment of the solute drag on moving grain boundaries and phase interfaces in binary alloys [J]. Acta Metall., 1976, 24: 731
|
43 |
Verhasselt J C, Gottstein G, Molodov D A, et al. Shape of moving grain boundaries in Al-bicrystals [J]. Acta Mater., 1999, 47: 887
|
44 |
Heo T W, Bhattacharyya S, Chen L Q. A phase field study of strain energy effects on solute-grain boundary interactions [J]. Acta Mater., 2011, 59: 7800
|
45 |
Xiao Y, Zou Y, Ma H, et al. Nanostructured NbMoTaW high entropy alloy thin films: High strength and enhanced fracture toughness [J]. Scr. Mater., 2019, 168: 51
|
46 |
Gottstein G, Shvindlerman L S. Theory of grain boundary motion in the presence of mobile particles [J]. Acta Metall. Mater., 1993, 41: 3267
|
47 |
Chen Z, Liu F, Yang X Q, et al. A thermokinetic description of nano-scale grain growth under dynamic grain boundary segregation condition [J]. J. Alloys Compd., 2014, 608: 338
|
48 |
Ma Y, Wang Q, Jiang B B, et al. Controlled formation of coherent cuboidal nanoprecipitates in body-centered cubic high-entropy alloys based on Al2(Ni, Co, Fe, Cr)14 compositions [J]. Acta Mater., 2018, 147: 213
|
49 |
Wang J J, Wu S S, Fu S, et al. Ultrahigh hardness with exceptional thermal stability of a nanocrystalline CoCrFeNiMn high-entropy alloy prepared by inert gas condensation [J]. Scr. Mater., 2020, 187: 335
|
50 |
Molinari A, Libardi S, Leoni M, et al. Role of lattice strain on thermal stability of a nanocrystalline FeMo alloy [J]. Acta Mater., 2010, 58: 963
|
51 |
Lu L, Li S X, Lu K. An abnormal strain rate effect on tensile behavior in nanocrystalline copper [J]. Scr. Mater., 2001, 45: 1163
|
52 |
Gao Z Q, Fultz B. Thermal stability of Fe3Si-based nanocrystals [J]. Hyperfine Interact., 1994, 94: 2213
|
53 |
Wu Y, Zhang F, Yuan X Y, et al. Short-range ordering and its effects on mechanical properties of high-entropy alloys [J]. J. Mater. Sci. Technol., 2021, 62: 214
|
54 |
Zhang R P, Zhao S T, Ding J, et al. Short-range order and its impact on the CrCoNi medium-entropy alloy [J]. Nature, 2020, 581: 283
|
55 |
Ding Q Q, Zhang Y, Chen X, et al. Tuning element distribution, structure and properties by composition in high-entropy alloys [J]. Nature, 2019, 574: 223
|
56 |
Ye Y F, Wang Q, Lu J, et al. High-entropy alloy: Challenges and prospects [J]. Mater. Today, 2016, 19: 349
|
57 |
Zhou N X, Hu T, Huang J J, et al. Stabilization of nanocrystalline alloys at high temperatures via utilizing high-entropy grain boundary complexions [J]. Scr. Mater., 2016, 124: 160
|
58 |
Zhou N X, Hu T, Luo J. Grain boundary complexions in multicomponent alloys: Challenges and opportunities [J]. Curr. Opin. Solid State Mater. Sci., 2016, 20: 268
|
59 |
Li Z M, Pradeep K G, Deng Y, et al. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off [J]. Nature, 2016, 534: 227
|
60 |
Varalakshmi S, Kamaraj M, Murty B S. Synthesis and characterization of nanocrystalline AlFeTiCrZnCu high entropy solid solution by mechanical alloying [J]. J. Alloys Compd., 2008, 460: 253
|
61 |
Maier-Kiener V, Schuh B, George E P, et al. Nanoindentation testing as a powerful screening tool for assessing phase stability of nanocrystalline high-entropy alloys [J]. Mater. Des., 2017, 115: 479
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|