Influences of Protein Adsorption on the in vitro Corrosion of Biomedical Metals
WANG Luning1,2(), LIU Lijun1, YAN Yu1,3, YANG Kun1, LU Lili1
1.Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China 2.State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China 3.Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
Cite this article:
WANG Luning, LIU Lijun, YAN Yu, YANG Kun, LU Lili. Influences of Protein Adsorption on the in vitro Corrosion of Biomedical Metals. Acta Metall Sin, 2021, 57(1): 1-15.
Protein could adsorb on the surfaces when biomedical metals contact with body fluids and then affect the corrosion behavior of metals. In vitro results demonstrate that protein adsorption retards metal dissolution, while the detachment of metal-protein complex from the surface accelerates the corrosion or its deposition could impede the metal corrosion. Protein adsorption and its influences on the metal corrosion are related to many factors, such as the type and content of proteins as well as the pro-perty of metals. Therefore, consensus has not been made on the influences of protein on metal corrosion. However, as one of most important components in the body fluids, it should be taken into consideration for the effects of protein on the corrosion behavior of metals in vitro. So that we can find the discrepancy between in vivo and in vitro tests and find the suitable simulated environment in vitro. This will help predict reasonably the corrosion behavior of biomedical metals in the human body.
Table 1 The in vitro and in vivo corrosion rates of Mg and Mg alloys[3-7]
Fig.1 Comparisons of in vivo and in vitro corrosion rates of magnesium alloys (The columns without error bars are obtained from less than three sets of data)
Fluid
Na+
K+
Ca2+
Mg2+
Cl-
HCO
HPO
H2PO
SO
mmol·L-1
mmol·L-1
mmol·L-1
mmol·L-1
mmol·L-1
mmol·L-1
mmol·L-1
mmol·L-1
mmol·L-1
Blood plasma[10,13]
134-143
3.5-4.7
2.1-2.7
1.5
100-108
25-30
1.0
-
0.5
Synovia fluids[10]
133-139
3.5-4.5
1.2-2.4
87-138
-
-
-
SBF[15]
142.0
5.0
2.5
1.5
148.0
4.2
1.0
-
0.5
PBS[3]
154.1
4.1
-
-
140.6
-
8.1
1.5
-
HBSS[3,12]
142.8
5.8
2.5
0.8
143.3
4.2
0.3
0.4
0.8
DMEM[3,12]
155.3
5.3
1.8
0.8
115.7
44.1
0.9
-
0.8
Ringer??s[14]
147
4.1
4.3
-
160
-
-
-
-
SBP[11]
142.0
5.0
2.5
1.5
103.0
27.0
1.0
-
0.5
Fluid
Amino acids
Glucose
Uric acid
Vitamins
Phenol red
Albumin
IgG
Fibrinogen
g·L-1
g·L-1
g·L-1
g·L-1
g·L-1
g·L-1
Blood plasma[10,13]
20-51
650-966
30.5-70.7
-
-
37.6-54.9
6.4-13.5
2-4
Synovia fluids[10]
-
-
39
-
6-10
1.47-4.62
-
SBF[15]
-
-
-
-
PBS[3]
-
-
-
-
HBSS[3,12]
-
5.6
-
-
DMEM[3,12]
10.6
25.0
0.15
0.04
Ringer??s[14]
-
-
-
-
SBP[11]
-
-
-
-
Table 2 Chemical components of blood plasma, synovia fluids, several commonly used simulated body fluids and simulated blood plasma[3,10-15]
Metal
Saline
Albumin
Fibrinogen
Aluminum
1.30
1.48
1.00
Chromium
0.50
2.38
0.70
Cobalt
1.50
31.50
40.95
Copper
3.72
169
96.60
Molybdenum
514
390
355
Nickel
4.80
7.70
9.50
Titanium
0.2
0.2
0.2
Table 3 Analyses of metals in saline and protein solutions after 16 h exposure[29]
Fig.3 Optimized complexes of BSA on polystyrene (PS) surface (a) and BSA on the GeO2 surface (b)[39]
Protein
Structure
Size
Molecular weight
Isoelectric point
Human serum albumin (HSA)
Triangular
8 nm×8 nm×3 nm
66 KDa
4.7
BSA
Triangular
8 nm×8 nm×3 nm
66 KDa
4.7
Bovine submaxillary gland mucin (BSM)
Random coil
Radius of 130 nm
7 MDa
3
Lysozyme (LYS)
Globular
4.5 nm×3 nm×3 nm
14.1 KDa
11
Table 4 The structure, size, molecular weight, and isoelectric point of different kinds of proteins[42]
Fig.4 Protein adsorption on the materials in SBF
Material
Binding constant
Saturation value
Hz
BSA OHa
5.3
47.2
BSA CH3a
5.4
40.9
Fg OH
10.9
102.0
Fg CH3
36.0
92.6
Table 5 Binding constants and saturation values for BSA and Fg[44]
Fig.5 Schematic model of the BSA layer formed on stainless-steel surface in artificial seawater, showing a first organic layer strongly attached to the oxide surface, and a second layer of proteins, the cohesion of which is ensured by magnesium ions[46]
Fig.6 AFM topographic images (a, c) and SKPFM images (b, d) of the CoCrMo alloy surface (a, b), and BSA on the CoCrMo alloy surface (c, d), the curves under each figure show the ups and downs of morphology and the potential of the green line on the corresponding image; and schematic of the adsorption of BSA on the CoCrMo surface which induces the gathering of free electros under SKPFM (e)(AFM—atomic force microscope, SKPFM—surface Kelvin potential force microscopy)[36]
Fig.7 Potentiodynamic polarization curves of 316L[66] (a), CoCrMo[66] (b), Ti-6Al-4V[66] (c), and pure Zr[28] (d) in PBS solutions with various BSA concentrations (0-4 g/L) (E—potential, I—current density)
Fig.8 Schematic illustrations of corrosion behaviors of M1A alloy in SBF and BSA-containing SBF (A-SBF)[15]
Material
NaCl
NaCl+NaF
NaCl+H2O2
PBS
HBSS
SBF
Ringer??s
SBP
M199
DMEM
Mg
?
??
??
T
?
Mg-Ca
??
AZ31
??
AZ80
?
AZ91
??
??
M1A
T
LAE442
??
ZK21-0.2Sc
??
Mg-Nd-Zn-Zr
??
WE43
??
MgY
??
Mg-Zn-Zr
??
Zn
??
316L stainless steel
??
??
?
??
Low carbon austenite
stainless steel
??
430/304
stainless steel
??
Ti
??
??
○
??
Ti-6Al-4V
○
??
??
?
??
CoCrMo
??
?
Nb
T
Zr
T
Table 6 The effects of BSA on the in vitro corrosion rate of biomedical metals in different solutions
Fig.9 Theoretical model of charged double layer showing the transfer of charge at the metal/oxide/protein interfaces before (a) and during (b) the corrosion process[55]
1
Talha M, Ma Y C, Kumar P, et al. Role of protein adsorption in the bio corrosion of metallic implants—A review [J]. Colloids Surf., 2019, 176B: 494
2
Sanchez A H M, Luthringer B J C, Feyerabend F, et al. Mg and Mg alloys: How comparable are in vitro and in vivo corrosion rates? A review [J]. Acta Biomater., 2015, 13: 16
3
Marco I, Myrissa A, Martinelli E, et al. In vivo and in vitro degradation comparison of pure Mg, Mg-10Gd and Mg-2Ag: A short term study [J]. Eur. Cells Mater., 2017, 33: 90
4
Wang J, Liu L M, Wu Y F, et al. Ex vivo blood vessel bioreactor for analysis of the biodegradation of magnesium stent models with and without vessel wall integration [J]. Acta Biomater., 2017, 50: 546
5
Chen K, Xie X H, Tang H Y, et al. In vitro and in vivo degradation behavior of Mg-2Sr-Ca and Mg-2Sr-Zn alloys [J]. Bioact. Mater., 2020, 5: 275
6
Makkar P, Kang H J, Padalhin A R, et al. In-vitro and in-vivo evaluation of strontium doped calcium phosphate coatings on biodegradable magnesium alloy for bone applications [J]. Appl. Surf. Sci., 2020, 510: 145333
7
Liu J N, Lin Y L, Bian D, et al. In vitro and in vivo studies of Mg-30Sc alloys with different phase structure for potential usage within bone [J]. Acta Biomater., 2019, 98: 50
8
Witte F, Fischer J, Nellesen J, et al. In vitro and in vivo corrosion measurements of magnesium alloys [J]. Biomaterials, 2006, 27: 1013
9
Xue D C, Yun Y H, Tan Z Q, et al. In vivo and in vitro degradation behavior of magnesium alloys as biomaterials [J]. J. Mater. Sci. Technol., 2012, 28: 261
10
Vidal C V, Muñoz A I. Influence of protein adsorption on corrosion of biomedical alloys [A]. Bio-Tribocorrosion in Biomaterials and Medical Implants [M]. Cambridge: Woodhead Publishing, 2013: 187
11
El-Taib Heakal F, Bakry A M. Serum albumin can influence magnesium alloy degradation in simulated blood plasma for cardiovascular stenting [J]. Mater. Chem. Phys., 2018, 220: 35
12
Gu X N, Zheng Y F, Chen L J. Influence of artificial biological fluid composition on the biocorrosion of potential orthopedic Mg-Ca, AZ31, AZ91 alloys [J]. Biomed. Mater., 2009, 4: 065011
13
Yamamoto A, Hiromoto S. Effect of inorganic salts, amino acids and proteins on the degradation of pure magnesium in vitro [J]. Mater. Sci. Eng., 2009, C29: 1559
14
Burstein G T, Liu C. Nucleation of corrosion pits in Ringer’s solution containing bovine serum [J]. Corros. Sci., 2007, 49: 4296
15
Wang Y S, Lim C S, Lim C V, et al. In vitro degradation behavior of M1A magnesium alloy in protein-containing simulated body fluid [J]. Mater. Sci. Eng., 2011, C31: 579
16
Yang L, Hort N, Willumeit R, et al. Effects of corrosion environment and proteins on magnesium corrosion [J]. Corros. Eng. Sci. Technol., 2012, 47: 335
17
Wagener V, Virtanen S. Protective layer formation on magnesium in cell culture medium [J]. Mater. Sci. Eng., 2016, C63: 341
18
Wagener V, Virtanen S. Influence of electrolyte composition (simulated body fluid vs. Dulbeccos modified eagles medium), temperature, and solution flow on the biocorrosion behavior of commercially pure Mg [J]. Corrosion, 2017, 73: 1413
19
Zhang J, Kong N, Shi Y J, et al. Influence of proteins and cells on in vitro corrosion of Mg-Nd-Zn-Zr alloy [J]. Corros. Sci., 2014, 85: 477
20
Mueller W D, de Mele M F L, Nascimento M L, et al. Degradation of magnesium and its alloys: Dependence on the composition of the synthetic biological media [J]. J. Biomed. Mater. Res., 2009, 90A: 487
21
Geis-Gerstorfer J, Schille C, Schweizer E, et al. Blood triggered corrosion of magnesium alloys [J]. Mater. Sci. Eng., 2011, B176: 1761
22
Harrison R, Maradze D, Lyons S, et al. Corrosion of magnesium and magnesium-calcium alloy in biologically-simulated environment [J]. Prog. Nat. Sci.: Mater. Int., 2014, 24: 539
23
Walker J, Shadanbaz S, Kirkland N T, et al. Magnesium alloys: Predicting in vivo corrosion with in vitro immersion testing [J]. J. Biomed. Mater. Res., 2012, 100B: 1134
24
Wang Y, Cui L Y, Zeng R C, et al. In vitro degradation of pure magnesium—The effects of glucose and/or amino acid [J]. Materials, 2017, 10: 725
25
Shkirskiy V, Keil P, Hintze-Bruening H, et al. The effects of L-cysteine on the inhibition and accelerated dissolution processes of zinc metal [J]. Corros. Sci., 2015, 100: 101
26
Cheng X L, Roscoe S G. Corrosion behavior of titanium in the presence of calcium phosphate and serum proteins [J]. Biomaterials, 2005, 26: 7350
27
Wang W, Mohammadi F, Alfantazi A. Corrosion behaviour of niobium in phosphate buffered saline solutions with different concentrations of bovine serum albumin [J]. Corros. Sci., 2012, 57: 11
28
Wang L N, Huang X Q, Shinbine A, et al. Influence of albumin on the electrochemical behaviour of Zr in phosphate buffered saline solutions [J]. J. Mater. Sci.: Mater. Med., 2013, 24: 295
29
Clark G C F, Williams D F. The effects of proteins on metallic corrosion [J]. J. Biomed. Mater. Res., 1982, 16: 125
30
Höhn S, Braem A, Neirinck B, et al. Albumin coatings by alternating current electrophoretic deposition for improving corrosion resistance and bioactivity of titanium implants [J]. Mater. Sci. Eng., 2017, C73: 798
31
Fasano M, Curry S, Terreno E, et al. The extraordinary ligand binding properties of human serum albumin [J]. IUBMB Life, 2005, 57: 787
32
Omanovic S, Roscoe S G. Electrochemical studies of the adsorption behavior of bovine serum albumin on stainless steel [J]. Langmuir, 1999, 15: 8315
33
Laggoun R, Ferhat M, Saidat B, et al. Effect of p-toluenesulfonyl hydrazide on copper corrosion in hydrochloric acid solution [J]. Corros. Sci., 2020, 165: 108363
34
Kidoaki S, Matsuda T. Adhesion forces of the blood plasma proteins on self-assembled monolayer surfaces of alkanethiolates with different functional groups measured by an atomic force microscope [J]. Langmuir, 1999, 15: 7639
35
Wassell D T H, Embery G. Adsorption of bovine serum albumin on to titanium powder [J]. Biomaterials, 1996, 17: 859
36
Yan Y, Yang H J, Su Y J, et al. Albumin adsorption on CoCrMo alloy surfaces [J]. Sci. Rep., 2016, 5: 18403
37
Zhou J, Chen S F, Jiang S Y. Orientation of adsorbed antibodies on charged surfaces by computer simulation based on a united-residue model [J]. Langmuir, 2003, 19: 3472
38
Muir J M R, Costa D, Idriss H. DFT computational study of the RGD peptide interaction with the rutile TiO2 (110) surface [J]. Surf. Sci., 2014, 624: 8
39
Jeyachandran Y L, Mielczarski E, Rai B, et al. Quantitative and qualitative evaluation of adsorption/desorption of bovine serum albumin on hydrophilic and hydrophobic surfaces [J]. Langmuir, 2009, 25: 11614
40
Sousa S R, Barbosa M A. Corrosion resistance of titanium CP in saline physiological solutions with calcium phosphate and proteins [J]. Clin. Mater., 1993, 14: 287
41
Hedberg Y S, Wallinder I O. Metal release from stainless steel in biological environments: A review [J]. Biointerphases, 2015, 11: 018901
42
Lundin M, Hedberg Y, Jiang T, et al. Adsorption and protein-induced metal release from chromium metal and stainless steel [J]. J. Colloid Interface Sci., 2012, 366: 155
43
Wagener V, Faltz A S, Killian M S, et al. Protein interactions with corroding metal surfaces: Comparison of Mg and Fe [J]. Faraday Discuss., 2015, 180: 347
44
Roach P, Farrar D, Perry C C. Interpretation of protein adsorption: Surface-induced conformational changes [J]. J. Am. Chem. Soc., 2005, 127: 8168
45
Yamamoto A, Kohyama Y. Cytocompatibility of Mg alloys and the effect of cells on their degradation in biological environment [A]. Magnesium Technology2014 [M]. Cham: Springer, 2014: 381
46
Pradier C M, Costa D, Rubio C, et al. Role of salts on BSA adsorption on stainless steel in aqueous solutions. I. FT-IRRAS and XPS characterization [J]. Surf. Interface Anal., 2002, 34: 50
47
Gallo M, Tadier S, Meille S, et al. Resorption of calcium phosphate materials: Considerations on the in vitro evaluation [J]. J. Eur. Ceram. Soc., 2018, 38: 899
48
Ouerd A, Alemany-Dumont C, Normand B, et al. Reactivity of CoCrMo alloy in physiological medium: Electrochemical characterization of the metal/protein interface [J]. Electrochim. Acta, 2008, 53: 4461
49
Wang Q C, Zhang B C, Ren Y B, et al. Research and application of biomedical nickel-free stainless steels [J]. Acta Metall. Sin., 2017, 53: 1311
Williams R L, Brown S A, Merritt K. Electrochemical studies on the influence of proteins on the corrosion of implant alloys [J]. Biomaterials, 1988, 9: 181
52
Xu W C, Yu F, Yang L H, et al. Accelerated corrosion of 316L stainless steel in simulated body fluids in the presence of H2O2 and albumin [J]. Mater. Sci. Eng., 2018, C92: 11
53
Burstein G T, Liu C. Nucleation of corrosion pits in Ringer’s solution containing bovine serum [J]. Corros. Sci., 2007, 49: 4296
54
Hedberg Y, Wang X, Hedberg J, et al. Surface-protein interactions on different stainless steel grades: Effects of protein adsorption, surface changes and metal release [J]. J. Mater. Sci.: Mater. Med., 2013, 24: 1015
55
Khan M A, Williams R L, Williams D F. The corrosion behaviour of Ti-6Al-4V, Ti-6Al-7Nb and Ti-13Nb-13Zr in protein solutions [J]. Biomaterials, 1999, 20: 631
56
Takemoto S, Hattori M, Yoshinari M, et al. Corrosion behavior and surface characterization of titanium in solution containing fluoride and albumin [J]. Biomaterials, 2005, 26: 829
57
Huang H H, Lee T H. Electrochemical impedance spectroscopy study of Ti-6Al-4V alloy in artificial saliva with fluoride and/or bovine albumin [J]. Dent. Mater., 2005, 21: 749
58
Yu F, Addison O, Davenport A J. A synergistic effect of albumin and H2O2 accelerates corrosion of Ti6Al4V [J]. Acta Biomater., 2015, 26: 355
59
Padilla N, Bronson A. Electrochemical characterization of albumin protein on Ti-6AL-4V alloy immersed in a simulated plasma solution [J]. J. Biomed. Mater. Res., 2007, 81A: 531
60
Khan M A, Williams R L, Williams D F. Conjoint corrosion and wear in titanium alloys [J]. Biomaterials, 1999, 20: 765
61
Hiromoto S, Mischler S. The influence of proteins on the fretting-corrosion behaviour of a Ti6Al4V alloy [J]. Wear, 2006, 261: 1002
62
Vidal C V, Muñoz A I. Study of the adsorption process of bovine serum albumin on passivated surfaces of CoCrMo biomedical alloy [J]. Electrochim. Acta, 2010, 55: 8445
63
Yan Y, Yang H J, Su Y J, et al. Study of the tribocorrosion behaviors of albumin on a cobalt-based alloy using scanning Kelvin probe force microscopy and atomic force microscopy [J]. Electrochem. Commun., 2016, 64: 61
64
Yan Y, Neville A, Dowson D. Biotribocorrosion of CoCrMo orthopaedic implant materials—Assessing the formation and effect of the biofilm [J]. Tribol. Int., 2007, 40: 1492
65
Wang Z W, Yan Y, Su Y J, et al. Effect of electrochemical corrosion on the subsurface microstructure evolution of a CoCrMo alloy in albumin containing environment [J]. Appl. Surf. Sci., 2017, 406: 319
66
Karimi S, Nickchi T, Alfantazi A. Effects of bovine serum albumin on the corrosion behaviour of AISI 316L, Co-28Cr-6Mo, and Ti-6Al-4V alloys in phosphate buffered saline solutions [J]. Corros. Sci., 2011, 53: 3262
67
Karimi S, Alfantazi A M. Ion release and surface oxide composition of AISI 316L, Co-28Cr-6Mo, and Ti-6Al-4V alloys immersed in human serum albumin solutions [J]. Mater. Sci. Eng., 2014, C40: 435
68
Karimi S, Nickchi T, Alfantazi A M. Long-term corrosion investigation of AISI 316L, Co-28Cr-6Mo, and Ti-6Al-4V alloys in simulated body solutions [J]. Appl. Surf. Sci., 2012, 258: 6087
69
Karimi S, Alfantazi A M. Electrochemical corrosion behavior of orthopedic biomaterials in presence of human serum albumin [J]. J. Electrochem. Soc., 2013, 160: C206
70
Wang W, Mohammadi F, Alfantazi A. Corrosion behaviour of niobium in phosphate buffered saline solutions with different concentrations of bovine serum albumin [J]. Corros. Sci., 2012, 57: 11
71
Wang L N, Meng Y, Liu L J, et al. Research progress on biodegradable zinc-based biomaterials [J]. Acta Metall. Sin., 2017, 53: 1317
Liu C L, Wang Y J, Zeng R C, et al. In vitro corrosion degradation behaviour of Mg-Ca alloy in the presence of albumin [J]. Corros. Sci., 2010, 52: 3341
74
Liu C L, Zhang Y, Zhang C Y, et al. Synergistic effect of chloride ion and albumin on the corrosion of pure magnesium [J]. Front. Mater. Sci., 2014, 8: 244
75
Liu C L, Xin Y C, Tian X B, et al. Degradation susceptibility of surgical magnesium alloy in artificial biological fluid containing albumin [J]. J. Mater. Res., 2007, 22: 1806
76
Harandi S E, Banerjee P C, Easton C D, et al. Influence of bovine serum albumin in Hanks solution on the corrosion and stress corrosion cracking of a magnesium alloy [J]. Mater. Sci. Eng., 2017, C80: 335
77
Li T, He Y, Zhou J X, et al. Influence of albumin on in vitro degradation behavior of biodegradable Mg-1.5Zn-0.6Zr-0.2Sc alloy [J]. Mater. Lett., 2018, 217: 227
78
Yamamoto A, Hiromoto S. Effect of inorganic salts, amino acids and proteins on the degradation of pure magnesium in vitro [J]. Mater. Sci. Eng., 2009, C29: 1559
79
Hornberger H, Witte F, Hort N, et al. Effect of fetal calf serum on the corrosion behaviour of magnesium alloys [J]. Mater. Sci. Eng., 2011, B176: 1746
80
Johnson I, Jiang W S, Liu H N. The effects of serum proteins on magnesium alloy degradation in vitro [J]. Sci. Rep., 2017, 7: 14335
81
Gu X N, Li N, Zheng Y F, et al. In vitro degradation performance and biological response of a Mg-Zn-Zr alloy [J]. Mater. Sci. Eng., 2011, B176: 1778
82
Willumeit R, Fischer J, Feyerabend F, et al. Chemical surface alteration of biodegradable magnesium exposed to corrosion media [J]. Acta Biomater., 2011, 7: 2704
83
Liu L J, Meng Y, Volinsky A A, et al. Influences of albumin on in vitro corrosion of pure Zn in artificial plasma [J]. Corros. Sci., 2019, 153: 341
84
Liu L J, Meng Y, Dong C F, et al. Initial formation of corrosion products on pure zinc in simulated body fluid [J]. J. Mater. Sci. Technol., 2018, 34: 2271
85
Hedberg Y S. Role of proteins in the degradation of relatively inert alloys in the human body [J]. npj Mater. Degrad., 2018, 2: 26
86
Vidal C V, Muñoz A I. Electrochemical characterisation of biomedical alloys for surgical implants in simulated body fluids [J]. Corros. Sci., 2008, 50: 1954
87
Mareci D, Chelariu R, Gordin D M, et al. Comparative corrosion study of Ti-Ta alloys for dental applications [J]. Acta Biomater., 2009, 5: 3625
88
Hedberg Y, Karlsson M E, Blomberg E, et al. Correlation between surface physicochemical properties and the release of iron from stainless steel AISI 304 in biological media [J]. Colloids Surf., 2014, 122B: 216
89
Hedberg Y, Karlsson M E, Wei Z, et al. Interaction of albumin and fibrinogen with stainless steel-influence of sequential exposure and protein aggregation on metal release and corrosion resistance [J]. Corrosion, 2017, 73: 1423
90
Hirsh S L, McKenzie D R, Nosworthy N J, et al. The Vroman effect: Competitive protein exchange with dynamic multilayer protein aggregates [J]. Colloids Surf., 2013, 103B: 395