Please wait a minute...
Acta Metall Sin  2021, Vol. 57 Issue (1): 1-15    DOI: 10.11900/0412.1961.2020.00198
Overview Current Issue | Archive | Adv Search |
Influences of Protein Adsorption on the in vitro Corrosion of Biomedical Metals
WANG Luning1,2(), LIU Lijun1, YAN Yu1,3, YANG Kun1, LU Lili1
1.Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
2.State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
3.Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
Cite this article: 

WANG Luning, LIU Lijun, YAN Yu, YANG Kun, LU Lili. Influences of Protein Adsorption on the in vitro Corrosion of Biomedical Metals. Acta Metall Sin, 2021, 57(1): 1-15.

Download:  HTML  PDF(9482KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Protein could adsorb on the surfaces when biomedical metals contact with body fluids and then affect the corrosion behavior of metals. In vitro results demonstrate that protein adsorption retards metal dissolution, while the detachment of metal-protein complex from the surface accelerates the corrosion or its deposition could impede the metal corrosion. Protein adsorption and its influences on the metal corrosion are related to many factors, such as the type and content of proteins as well as the pro-perty of metals. Therefore, consensus has not been made on the influences of protein on metal corrosion. However, as one of most important components in the body fluids, it should be taken into consideration for the effects of protein on the corrosion behavior of metals in vitro. So that we can find the discrepancy between in vivo and in vitro tests and find the suitable simulated environment in vitro. This will help predict reasonably the corrosion behavior of biomedical metals in the human body.

Key words:  protein      biomedical metal      corrosion      adsorption      in vitro test     
Received:  03 June 2020     
ZTFLH:  TG146.13  
Fund: National Key Research and Development Program of China(2016YFC251100);National Natural Science Foundation of China(51503014)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2020.00198     OR     https://www.ams.org.cn/EN/Y2021/V57/I1/1

MaterialIn vitroIn vivoRef.
SolutionWeight lossHydrogen evolutionVolume reductions/
weight loss
Pure MgPBS0.28±0.070.19±0.020.15±0.03[3]
HBSS0.72±0.310.57±0.07
DMEM1.07±0.100.57±0.07
Mg-10GdPBS0.61±0.100.40±0.101.11±0.05[3]
HBSS1.57±0.621.23±0.56
DMEM0.42±0.120.20±0.01
Mg-2AgPBS16.71±3.0615.12±2.970.13±0.04[3]
HBSS5.41±0.713.48±0.36
DMEM2.21±0.260.68±0.04
Pure MgDMEM

Static immersion 1.6±0.3

Aortic bioreactor:

Lumen>4.0±0.8

Wall 1.9±0.5

Aortic lumen 1.1±0.3[4]
Aortic wall 1.5±0.6
Mg-2SrHBSS~0.37~0.321.37[5]
Mg-2Sr-CaHBSS~0.24~0.211.10[5]
Mg-2Sr-ZnHBSS~0.15~0.110.85[5]
Pure MgHBSS17.2%±0.5% (14 d)65.4%±1.5% (4 weeks)[6]
Mg+Ca-Sr-P coatingHBSS4.8%±0.7% (14 d)76.7%±1.9% (4 weeks)[6]
Mg-30%Sc (mass fraction)HBSSα+β phase 3.4±0.1β phase 0.06±0.01[7]
Single phase 2.9±0.1
Table 1  The in vitro and in vivo corrosion rates of Mg and Mg alloys[3-7]
Fig.1  Comparisons of in vivo and in vitro corrosion rates of magnesium alloys (The columns without error bars are obtained from less than three sets of data)
FluidNa+K+Ca2+Mg2+Cl-HCO3-HPO42-H2PO4-SO42-
mmol·L-1mmol·L-1mmol·L-1mmol·L-1mmol·L-1mmol·L-1mmol·L-1mmol·L-1mmol·L-1
Blood plasma[10,13]134-1433.5-4.72.1-2.71.5100-10825-301.0-0.5
Synovia fluids[10]133-1393.5-4.51.2-2.487-138---
SBF[15]142.05.02.51.5148.04.21.0-0.5
PBS[3]154.14.1--140.6-8.11.5-
HBSS[3,12]142.85.82.50.8143.34.20.30.40.8
DMEM[3,12]155.35.31.80.8115.744.10.9-0.8
Ringer??s[14]1474.14.3-160----
SBP[11]142.05.02.51.5103.027.01.0-0.5
FluidAmino acidsGlucoseUric acidVitaminsPhenol redAlbuminIgGFibrinogen
g·L-1g·L-1g·L-1g·L-1g·L-1g·L-1
Blood plasma[10,13]20-51650-96630.5-70.7--37.6-54.96.4-13.52-4
Synovia fluids[10]--39-6-101.47-4.62-
SBF[15]----
PBS[3]----
HBSS[3,12]-5.6--
DMEM[3,12]10.625.00.150.04
Ringer??s[14]----
SBP[11]----
Table 2  Chemical components of blood plasma, synovia fluids, several commonly used simulated body fluids and simulated blood plasma[3,10-15]
MetalSalineAlbuminFibrinogen
Aluminum1.301.481.00
Chromium0.502.380.70
Cobalt1.5031.5040.95
Copper3.7216996.60
Molybdenum514390355
Nickel4.807.709.50
Titanium0.20.20.2
Table 3  Analyses of metals in saline and protein solutions after 16 h exposure[29]
Fig.2  Schematic of BSA (PDB bank: 4f5s) structure (BSA—bovine serum albumin)
Fig.3  Optimized complexes of BSA on polystyrene (PS) surface (a) and BSA on the GeO2 surface (b)[39]
ProteinStructureSizeMolecular weightIsoelectric point
Human serum albumin (HSA)Triangular8 nm×8 nm×3 nm66 KDa4.7
BSATriangular8 nm×8 nm×3 nm66 KDa4.7
Bovine submaxillary gland mucin (BSM)Random coilRadius of 130 nm7 MDa3
Lysozyme (LYS)Globular4.5 nm×3 nm×3 nm14.1 KDa11
Table 4  The structure, size, molecular weight, and isoelectric point of different kinds of proteins[42]
Fig.4  Protein adsorption on the materials in SBF
MaterialBinding constant

Saturation value

Hz

BSA OHa5.347.2
BSA CH3a5.440.9
Fg OH10.9102.0
Fg CH336.092.6
Table 5  Binding constants and saturation values for BSA and Fg[44]
Fig.5  Schematic model of the BSA layer formed on stainless-steel surface in artificial seawater, showing a first organic layer strongly attached to the oxide surface, and a second layer of proteins, the cohesion of which is ensured by magnesium ions[46]
Fig.6  AFM topographic images (a, c) and SKPFM images (b, d) of the CoCrMo alloy surface (a, b), and BSA on the CoCrMo alloy surface (c, d), the curves under each figure show the ups and downs of morphology and the potential of the green line on the corresponding image; and schematic of the adsorption of BSA on the CoCrMo surface which induces the gathering of free electros under SKPFM (e)(AFM—atomic force microscope, SKPFM—surface Kelvin potential force microscopy)[36]
Fig.7  Potentiodynamic polarization curves of 316L[66] (a), CoCrMo[66] (b), Ti-6Al-4V[66] (c), and pure Zr[28] (d) in PBS solutions with various BSA concentrations (0-4 g/L) (E—potential, I—current density)
Fig.8  Schematic illustrations of corrosion behaviors of M1A alloy in SBF and BSA-containing SBF (A-SBF)[15]
MaterialNaClNaCl+NaFNaCl+H2O2PBSHBSSSBFRinger??sSBPM199DMEM
Mg?????T?
Mg-Ca??
AZ31??
AZ80?
AZ91????
M1AT
LAE442??
ZK21-0.2Sc??
Mg-Nd-Zn-Zr??
WE43??
MgY??
Mg-Zn-Zr??
Zn??
316L stainless steel???????

Low carbon austenite

stainless steel

??

430/304

stainless steel

??
Ti??????
Ti-6Al-4V???????
CoCrMo???
NbT
ZrT
Table 6  The effects of BSA on the in vitro corrosion rate of biomedical metals in different solutions
Fig.9  Theoretical model of charged double layer showing the transfer of charge at the metal/oxide/protein interfaces before (a) and during (b) the corrosion process[55]
1 Talha M, Ma Y C, Kumar P, et al. Role of protein adsorption in the bio corrosion of metallic implants—A review [J]. Colloids Surf., 2019, 176B: 494
2 Sanchez A H M, Luthringer B J C, Feyerabend F, et al. Mg and Mg alloys: How comparable are in vitro and in vivo corrosion rates? A review [J]. Acta Biomater., 2015, 13: 16
3 Marco I, Myrissa A, Martinelli E, et al. In vivo and in vitro degradation comparison of pure Mg, Mg-10Gd and Mg-2Ag: A short term study [J]. Eur. Cells Mater., 2017, 33: 90
4 Wang J, Liu L M, Wu Y F, et al. Ex vivo blood vessel bioreactor for analysis of the biodegradation of magnesium stent models with and without vessel wall integration [J]. Acta Biomater., 2017, 50: 546
5 Chen K, Xie X H, Tang H Y, et al. In vitro and in vivo degradation behavior of Mg-2Sr-Ca and Mg-2Sr-Zn alloys [J]. Bioact. Mater., 2020, 5: 275
6 Makkar P, Kang H J, Padalhin A R, et al. In-vitro and in-vivo evaluation of strontium doped calcium phosphate coatings on biodegradable magnesium alloy for bone applications [J]. Appl. Surf. Sci., 2020, 510: 145333
7 Liu J N, Lin Y L, Bian D, et al. In vitro and in vivo studies of Mg-30Sc alloys with different phase structure for potential usage within bone [J]. Acta Biomater., 2019, 98: 50
8 Witte F, Fischer J, Nellesen J, et al. In vitro and in vivo corrosion measurements of magnesium alloys [J]. Biomaterials, 2006, 27: 1013
9 Xue D C, Yun Y H, Tan Z Q, et al. In vivo and in vitro degradation behavior of magnesium alloys as biomaterials [J]. J. Mater. Sci. Technol., 2012, 28: 261
10 Vidal C V, Muñoz A I. Influence of protein adsorption on corrosion of biomedical alloys [A]. Bio-Tribocorrosion in Biomaterials and Medical Implants [M]. Cambridge: Woodhead Publishing, 2013: 187
11 El-Taib Heakal F, Bakry A M. Serum albumin can influence magnesium alloy degradation in simulated blood plasma for cardiovascular stenting [J]. Mater. Chem. Phys., 2018, 220: 35
12 Gu X N, Zheng Y F, Chen L J. Influence of artificial biological fluid composition on the biocorrosion of potential orthopedic Mg-Ca, AZ31, AZ91 alloys [J]. Biomed. Mater., 2009, 4: 065011
13 Yamamoto A, Hiromoto S. Effect of inorganic salts, amino acids and proteins on the degradation of pure magnesium in vitro [J]. Mater. Sci. Eng., 2009, C29: 1559
14 Burstein G T, Liu C. Nucleation of corrosion pits in Ringer’s solution containing bovine serum [J]. Corros. Sci., 2007, 49: 4296
15 Wang Y S, Lim C S, Lim C V, et al. In vitro degradation behavior of M1A magnesium alloy in protein-containing simulated body fluid [J]. Mater. Sci. Eng., 2011, C31: 579
16 Yang L, Hort N, Willumeit R, et al. Effects of corrosion environment and proteins on magnesium corrosion [J]. Corros. Eng. Sci. Technol., 2012, 47: 335
17 Wagener V, Virtanen S. Protective layer formation on magnesium in cell culture medium [J]. Mater. Sci. Eng., 2016, C63: 341
18 Wagener V, Virtanen S. Influence of electrolyte composition (simulated body fluid vs. Dulbecco􀆳s modified eagle􀆳s medium), temperature, and solution flow on the biocorrosion behavior of commercially pure Mg [J]. Corrosion, 2017, 73: 1413
19 Zhang J, Kong N, Shi Y J, et al. Influence of proteins and cells on in vitro corrosion of Mg-Nd-Zn-Zr alloy [J]. Corros. Sci., 2014, 85: 477
20 Mueller W D, de Mele M F L, Nascimento M L, et al. Degradation of magnesium and its alloys: Dependence on the composition of the synthetic biological media [J]. J. Biomed. Mater. Res., 2009, 90A: 487
21 Geis-Gerstorfer J, Schille C, Schweizer E, et al. Blood triggered corrosion of magnesium alloys [J]. Mater. Sci. Eng., 2011, B176: 1761
22 Harrison R, Maradze D, Lyons S, et al. Corrosion of magnesium and magnesium-calcium alloy in biologically-simulated environment [J]. Prog. Nat. Sci.: Mater. Int., 2014, 24: 539
23 Walker J, Shadanbaz S, Kirkland N T, et al. Magnesium alloys: Predicting in vivo corrosion with in vitro immersion testing [J]. J. Biomed. Mater. Res., 2012, 100B: 1134
24 Wang Y, Cui L Y, Zeng R C, et al. In vitro degradation of pure magnesium—The effects of glucose and/or amino acid [J]. Materials, 2017, 10: 725
25 Shkirskiy V, Keil P, Hintze-Bruening H, et al. The effects of L-cysteine on the inhibition and accelerated dissolution processes of zinc metal [J]. Corros. Sci., 2015, 100: 101
26 Cheng X L, Roscoe S G. Corrosion behavior of titanium in the presence of calcium phosphate and serum proteins [J]. Biomaterials, 2005, 26: 7350
27 Wang W, Mohammadi F, Alfantazi A. Corrosion behaviour of niobium in phosphate buffered saline solutions with different concentrations of bovine serum albumin [J]. Corros. Sci., 2012, 57: 11
28 Wang L N, Huang X Q, Shinbine A, et al. Influence of albumin on the electrochemical behaviour of Zr in phosphate buffered saline solutions [J]. J. Mater. Sci.: Mater. Med., 2013, 24: 295
29 Clark G C F, Williams D F. The effects of proteins on metallic corrosion [J]. J. Biomed. Mater. Res., 1982, 16: 125
30 Höhn S, Braem A, Neirinck B, et al. Albumin coatings by alternating current electrophoretic deposition for improving corrosion resistance and bioactivity of titanium implants [J]. Mater. Sci. Eng., 2017, C73: 798
31 Fasano M, Curry S, Terreno E, et al. The extraordinary ligand binding properties of human serum albumin [J]. IUBMB Life, 2005, 57: 787
32 Omanovic S, Roscoe S G. Electrochemical studies of the adsorption behavior of bovine serum albumin on stainless steel [J]. Langmuir, 1999, 15: 8315
33 Laggoun R, Ferhat M, Saidat B, et al. Effect of p-toluenesulfonyl hydrazide on copper corrosion in hydrochloric acid solution [J]. Corros. Sci., 2020, 165: 108363
34 Kidoaki S, Matsuda T. Adhesion forces of the blood plasma proteins on self-assembled monolayer surfaces of alkanethiolates with different functional groups measured by an atomic force microscope [J]. Langmuir, 1999, 15: 7639
35 Wassell D T H, Embery G. Adsorption of bovine serum albumin on to titanium powder [J]. Biomaterials, 1996, 17: 859
36 Yan Y, Yang H J, Su Y J, et al. Albumin adsorption on CoCrMo alloy surfaces [J]. Sci. Rep., 2016, 5: 18403
37 Zhou J, Chen S F, Jiang S Y. Orientation of adsorbed antibodies on charged surfaces by computer simulation based on a united-residue model [J]. Langmuir, 2003, 19: 3472
38 Muir J M R, Costa D, Idriss H. DFT computational study of the RGD peptide interaction with the rutile TiO2 (110) surface [J]. Surf. Sci., 2014, 624: 8
39 Jeyachandran Y L, Mielczarski E, Rai B, et al. Quantitative and qualitative evaluation of adsorption/desorption of bovine serum albumin on hydrophilic and hydrophobic surfaces [J]. Langmuir, 2009, 25: 11614
40 Sousa S R, Barbosa M A. Corrosion resistance of titanium CP in saline physiological solutions with calcium phosphate and proteins [J]. Clin. Mater., 1993, 14: 287
41 Hedberg Y S, Wallinder I O. Metal release from stainless steel in biological environments: A review [J]. Biointerphases, 2015, 11: 018901
42 Lundin M, Hedberg Y, Jiang T, et al. Adsorption and protein-induced metal release from chromium metal and stainless steel [J]. J. Colloid Interface Sci., 2012, 366: 155
43 Wagener V, Faltz A S, Killian M S, et al. Protein interactions with corroding metal surfaces: Comparison of Mg and Fe [J]. Faraday Discuss., 2015, 180: 347
44 Roach P, Farrar D, Perry C C. Interpretation of protein adsorption: Surface-induced conformational changes [J]. J. Am. Chem. Soc., 2005, 127: 8168
45 Yamamoto A, Kohyama Y. Cytocompatibility of Mg alloys and the effect of cells on their degradation in biological environment [A]. Magnesium Technology2014 [M]. Cham: Springer, 2014: 381
46 Pradier C M, Costa D, Rubio C, et al. Role of salts on BSA adsorption on stainless steel in aqueous solutions. I. FT-IRRAS and XPS characterization [J]. Surf. Interface Anal., 2002, 34: 50
47 Gallo M, Tadier S, Meille S, et al. Resorption of calcium phosphate materials: Considerations on the in vitro evaluation [J]. J. Eur. Ceram. Soc., 2018, 38: 899
48 Ouerd A, Alemany-Dumont C, Normand B, et al. Reactivity of CoCrMo alloy in physiological medium: Electrochemical characterization of the metal/protein interface [J]. Electrochim. Acta, 2008, 53: 4461
49 Wang Q C, Zhang B C, Ren Y B, et al. Research and application of biomedical nickel-free stainless steels [J]. Acta Metall. Sin., 2017, 53: 1311
王青川, 张炳春, 任伊宾等. 医用无镍不锈钢的研究与应用 [J]. 金属学报, 2017, 53: 1311
50 Yu Z T, Yu S, Cheng J, et al. Development and application of novel biomedical titanium alloy materials [J]. Acta Metall. Sin., 2017, 53: 1238
于振涛, 余 森, 程 军等. 新型医用钛合金材料的研发和应用现状 [J]. 金属学报, 2017, 53: 1238
51 Williams R L, Brown S A, Merritt K. Electrochemical studies on the influence of proteins on the corrosion of implant alloys [J]. Biomaterials, 1988, 9: 181
52 Xu W C, Yu F, Yang L H, et al. Accelerated corrosion of 316L stainless steel in simulated body fluids in the presence of H2O2 and albumin [J]. Mater. Sci. Eng., 2018, C92: 11
53 Burstein G T, Liu C. Nucleation of corrosion pits in Ringer’s solution containing bovine serum [J]. Corros. Sci., 2007, 49: 4296
54 Hedberg Y, Wang X, Hedberg J, et al. Surface-protein interactions on different stainless steel grades: Effects of protein adsorption, surface changes and metal release [J]. J. Mater. Sci.: Mater. Med., 2013, 24: 1015
55 Khan M A, Williams R L, Williams D F. The corrosion behaviour of Ti-6Al-4V, Ti-6Al-7Nb and Ti-13Nb-13Zr in protein solutions [J]. Biomaterials, 1999, 20: 631
56 Takemoto S, Hattori M, Yoshinari M, et al. Corrosion behavior and surface characterization of titanium in solution containing fluoride and albumin [J]. Biomaterials, 2005, 26: 829
57 Huang H H, Lee T H. Electrochemical impedance spectroscopy study of Ti-6Al-4V alloy in artificial saliva with fluoride and/or bovine albumin [J]. Dent. Mater., 2005, 21: 749
58 Yu F, Addison O, Davenport A J. A synergistic effect of albumin and H2O2 accelerates corrosion of Ti6Al4V [J]. Acta Biomater., 2015, 26: 355
59 Padilla N, Bronson A. Electrochemical characterization of albumin protein on Ti-6AL-4V alloy immersed in a simulated plasma solution [J]. J. Biomed. Mater. Res., 2007, 81A: 531
60 Khan M A, Williams R L, Williams D F. Conjoint corrosion and wear in titanium alloys [J]. Biomaterials, 1999, 20: 765
61 Hiromoto S, Mischler S. The influence of proteins on the fretting-corrosion behaviour of a Ti6Al4V alloy [J]. Wear, 2006, 261: 1002
62 Vidal C V, Muñoz A I. Study of the adsorption process of bovine serum albumin on passivated surfaces of CoCrMo biomedical alloy [J]. Electrochim. Acta, 2010, 55: 8445
63 Yan Y, Yang H J, Su Y J, et al. Study of the tribocorrosion behaviors of albumin on a cobalt-based alloy using scanning Kelvin probe force microscopy and atomic force microscopy [J]. Electrochem. Commun., 2016, 64: 61
64 Yan Y, Neville A, Dowson D. Biotribocorrosion of CoCrMo orthopaedic implant materials—Assessing the formation and effect of the biofilm [J]. Tribol. Int., 2007, 40: 1492
65 Wang Z W, Yan Y, Su Y J, et al. Effect of electrochemical corrosion on the subsurface microstructure evolution of a CoCrMo alloy in albumin containing environment [J]. Appl. Surf. Sci., 2017, 406: 319
66 Karimi S, Nickchi T, Alfantazi A. Effects of bovine serum albumin on the corrosion behaviour of AISI 316L, Co-28Cr-6Mo, and Ti-6Al-4V alloys in phosphate buffered saline solutions [J]. Corros. Sci., 2011, 53: 3262
67 Karimi S, Alfantazi A M. Ion release and surface oxide composition of AISI 316L, Co-28Cr-6Mo, and Ti-6Al-4V alloys immersed in human serum albumin solutions [J]. Mater. Sci. Eng., 2014, C40: 435
68 Karimi S, Nickchi T, Alfantazi A M. Long-term corrosion investigation of AISI 316L, Co-28Cr-6Mo, and Ti-6Al-4V alloys in simulated body solutions [J]. Appl. Surf. Sci., 2012, 258: 6087
69 Karimi S, Alfantazi A M. Electrochemical corrosion behavior of orthopedic biomaterials in presence of human serum albumin [J]. J. Electrochem. Soc., 2013, 160: C206
70 Wang W, Mohammadi F, Alfantazi A. Corrosion behaviour of niobium in phosphate buffered saline solutions with different concentrations of bovine serum albumin [J]. Corros. Sci., 2012, 57: 11
71 Wang L N, Meng Y, Liu L J, et al. Research progress on biodegradable zinc-based biomaterials [J]. Acta Metall. Sin., 2017, 53: 1317
王鲁宁, 孟 瑶, 刘丽君等. 可降解锌基生物材料的研究进展 [J]. 金属学报, 2017, 53: 1317
72 Zeng R C, Cui L Y, Ke W. Biomedical magnesium alloys: Composition, microstructure and corrosion [J]. Acta Metall. Sin., 2018, 54: 1215
曾荣昌, 崔蓝月, 柯 伟. 医用镁合金: 成分、组织及腐蚀 [J]. 金属学报, 2018, 54: 1215
73 Liu C L, Wang Y J, Zeng R C, et al. In vitro corrosion degradation behaviour of Mg-Ca alloy in the presence of albumin [J]. Corros. Sci., 2010, 52: 3341
74 Liu C L, Zhang Y, Zhang C Y, et al. Synergistic effect of chloride ion and albumin on the corrosion of pure magnesium [J]. Front. Mater. Sci., 2014, 8: 244
75 Liu C L, Xin Y C, Tian X B, et al. Degradation susceptibility of surgical magnesium alloy in artificial biological fluid containing albumin [J]. J. Mater. Res., 2007, 22: 1806
76 Harandi S E, Banerjee P C, Easton C D, et al. Influence of bovine serum albumin in Hanks􀆳 solution on the corrosion and stress corrosion cracking of a magnesium alloy [J]. Mater. Sci. Eng., 2017, C80: 335
77 Li T, He Y, Zhou J X, et al. Influence of albumin on in vitro degradation behavior of biodegradable Mg-1.5Zn-0.6Zr-0.2Sc alloy [J]. Mater. Lett., 2018, 217: 227
78 Yamamoto A, Hiromoto S. Effect of inorganic salts, amino acids and proteins on the degradation of pure magnesium in vitro [J]. Mater. Sci. Eng., 2009, C29: 1559
79 Hornberger H, Witte F, Hort N, et al. Effect of fetal calf serum on the corrosion behaviour of magnesium alloys [J]. Mater. Sci. Eng., 2011, B176: 1746
80 Johnson I, Jiang W S, Liu H N. The effects of serum proteins on magnesium alloy degradation in vitro [J]. Sci. Rep., 2017, 7: 14335
81 Gu X N, Li N, Zheng Y F, et al. In vitro degradation performance and biological response of a Mg-Zn-Zr alloy [J]. Mater. Sci. Eng., 2011, B176: 1778
82 Willumeit R, Fischer J, Feyerabend F, et al. Chemical surface alteration of biodegradable magnesium exposed to corrosion media [J]. Acta Biomater., 2011, 7: 2704
83 Liu L J, Meng Y, Volinsky A A, et al. Influences of albumin on in vitro corrosion of pure Zn in artificial plasma [J]. Corros. Sci., 2019, 153: 341
84 Liu L J, Meng Y, Dong C F, et al. Initial formation of corrosion products on pure zinc in simulated body fluid [J]. J. Mater. Sci. Technol., 2018, 34: 2271
85 Hedberg Y S. Role of proteins in the degradation of relatively inert alloys in the human body [J]. npj Mater. Degrad., 2018, 2: 26
86 Vidal C V, Muñoz A I. Electrochemical characterisation of biomedical alloys for surgical implants in simulated body fluids [J]. Corros. Sci., 2008, 50: 1954
87 Mareci D, Chelariu R, Gordin D M, et al. Comparative corrosion study of Ti-Ta alloys for dental applications [J]. Acta Biomater., 2009, 5: 3625
88 Hedberg Y, Karlsson M E, Blomberg E, et al. Correlation between surface physicochemical properties and the release of iron from stainless steel AISI 304 in biological media [J]. Colloids Surf., 2014, 122B: 216
89 Hedberg Y, Karlsson M E, Wei Z, et al. Interaction of albumin and fibrinogen with stainless steel-influence of sequential exposure and protein aggregation on metal release and corrosion resistance [J]. Corrosion, 2017, 73: 1423
90 Hirsh S L, McKenzie D R, Nosworthy N J, et al. The Vroman effect: Competitive protein exchange with dynamic multilayer protein aggregates [J]. Colloids Surf., 2013, 103B: 395
[1] CHEN Runnong, LI Zhaodong, CAO Yanguang, ZHANG Qifu, LI Xiaogang. Initial Corrosion Behavior and Local Corrosion Origin of 9%Cr Alloy Steel in ClContaining Environment[J]. 金属学报, 2023, 59(7): 926-938.
[2] LI Xiaohan, CAO Gongwang, GUO Mingxiao, PENG Yunchao, MA Kaijun, WANG Zhenyao. Initial Corrosion Behavior of Carbon Steel Q235, Pipeline Steel L415, and Pressure Vessel Steel 16MnNi Under High Humidity and High Irradiation Coastal-Industrial Atmosphere in Zhanjiang[J]. 金属学报, 2023, 59(7): 884-892.
[3] ZHANG Qiliang, WANG Yuchao, LI Guangda, LI Xianjun, HUANG Yi, XU Yunze. Erosion-Corrosion Performance of EH36 Steel Under Sand Impacts of Different Particle Sizes[J]. 金属学报, 2023, 59(7): 893-904.
[4] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[5] SI Yongli, XUE Jintao, WANG Xingfu, LIANG Juhua, SHI Zimu, HAN Fusheng. Effect of Cr Addition on the Corrosion Behavior of Twinning-Induced Plasticity Steel[J]. 金属学报, 2023, 59(7): 905-914.
[6] ZHAO Pingping, SONG Yingwei, DONG Kaihui, HAN En-Hou. Synergistic Effect Mechanism of Different Ions on the Electrochemical Corrosion Behavior of TC4 Titanium Alloy[J]. 金属学报, 2023, 59(7): 939-946.
[7] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
[8] HAN En-Hou, WANG Jianqiu. Effect of Surface State on Corrosion and Stress Corrosion for Nuclear Materials[J]. 金属学报, 2023, 59(4): 513-522.
[9] XU Linjie, LIU Hui, REN Ling, YANG Ke. Effect of Cu on In-Stent Restenosis and Corrosion Resistance of Ni-Ti Alloy[J]. 金属学报, 2023, 59(4): 577-584.
[10] WANG Jingyang, SUN Luchao, LUO Yixiu, TIAN Zhilin, REN Xiaomin, ZHANG Jie. Rare Earth Silicate Environmental Barrier Coating Material: High-Entropy Design and Resistance to CMAS Corrosion[J]. 金属学报, 2023, 59(4): 523-536.
[11] CHANG Litao. Corrosion and Stress Corrosion Crack Initiation in the Machined Surfaces of Austenitic Stainless Steels in Pressurized Water Reactor Primary Water: Research Progress and Perspective[J]. 金属学报, 2023, 59(2): 191-204.
[12] XIA Dahai, JI Yuanyuan, MAO Yingchang, DENG Chengman, ZHU Yu, HU Wenbin. Localized Corrosion Mechanism of 2024 Aluminum Alloy in a Simulated Dynamic Seawater/Air Interface[J]. 金属学报, 2023, 59(2): 297-308.
[13] LIAO Jingjing, ZHANG Wei, ZHANG Junsong, WU Jun, YANG Zhongbo, PENG Qian, QIU Shaoyu. Periodic Densification-Transition Behavior of Zr-Sn-Nb-Fe-V Alloys During Uniform Corrosion in Superheated Steam[J]. 金属学报, 2023, 59(2): 289-296.
[14] HU Wenbin, ZHANG Xiaowen, SONG Longfei, LIAO Bokai, WAN Shan, KANG Lei, GUO Xingpeng. Corrosion Behavior of AlCoCrFeNi2.1 Eutectic High-Entropy Alloy in Sulfuric Acid Solution[J]. 金属学报, 2023, 59(12): 1644-1654.
[15] SONG Jialiang, JIANG Zixue, YI Pan, CHEN Junhang, LI Zhaoliang, LUO Hong, DONG Chaofang, XIAO Kui. Corrosion Behavior and Product Evolution of Steel for High-Speed Railway Bogie G390NH in Simulated Marine and Industrial Atmospheric Environment[J]. 金属学报, 2023, 59(11): 1487-1498.
No Suggested Reading articles found!