|
|
Electronic Theoretical Study of the Influence of Cr on Corrosion Resistance of Fe-Cr Alloy |
Yao WANG1,Chunfu LI1,Yuanhua LIN1,2( ) |
1 School of Materials Science and Engineering, Southwest Petroleum University, Chengdu 610500, China 2 State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, |
|
Cite this article:
Yao WANG,Chunfu LI,Yuanhua LIN. Electronic Theoretical Study of the Influence of Cr on Corrosion Resistance of Fe-Cr Alloy. Acta Metall Sin, 2017, 53(5): 622-630.
|
Abstract Based on the empirical electron theory (EET) of solids and molecules, the valence electron structure caculation results of Fe-Cr alloy containing (0~30%)Cr were analyzed semi-quantitatively. The electron density differences of interface (Δρ) between Fe-Cr alloy and Cr2O3, Fe2O3 passivation films were calculated. According to the results, adding Cr to α-Fe matrix can strengthen the matrix by improving the number of hybid atomic orbitals σn, the number of the strongest bond covalent electron pairs nA and the strongest covalent bond energy EA of Fe-Cr alloy. Once the content of Cr rises up to 12.52% and 24.3%, the corrosion resistance of Fe-Cr alloy is improved because of Cr being changed to a higher hybrid level, where Cr becomes more unstable and easily reacts with environment to form a complete passivation layer of Cr2O3. Moreover, among the electronic density differences of 24 low-index faces between Fe-Cr and Cr2O3, Fe2O3, only the Δρ of Fe-Cr(112)/ Cr2O3(0001), Fe-Cr(112)/Cr2O3 (101?0)Cr,Fe-Cr(112)/Fe2O3(112?0) are lower than 10%. For the matrix with same content of Cr, the Δρ between Fe-Cr(112) and Cr2O3(101?0)Cr is the lowest, but the number of hybid atomic orbitals σ satisfied Δρ<10% is the largest. Δρ (σ) of Fe-Cr(112)/Cr2O3(0001) and Fe-Cr(112)/Fe2O3(112?0) is decreased (increased) with the increase of Cr, therefore the interface bonding strength between Cr2O3, Fe2O3 and matrix will be enhanced, it has been found that the corrosion resistance of Fe-24.3%Cr is better. The calculation results of variation of Fe-Cr corrosion resistance with Cr content are in better agreement with Tammann's law.
|
Received: 01 July 2016
|
Fund: Supported by National High Technology Research and Development Program of China (No.2006AA06A105) and Fund of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation (No.PLN0609) |
[1] | Chen K M.Corrosion and Protection of Process Equipment [M]. Beijing: Chemical Industry Press, 2001: 84 | [1] | (陈匡民. 过程装备腐蚀与防护 [M]. 北京: 化学工业出版社, 2001: 84) | [2] | Chavchanidze A S, Krementulo A V.Influence of electron structure on the corrosional resistance of iron-based solid solutions in aggre-ssive media[J]. Steel. Transl., 2000, 30: 74 | [3] | Shcherbakov A I.Theory of dissolution of binary alloys and the Tamman rule[J]. Prot. Met., 2005, 41: 30 | [4] | Xu L N, Wang B, Zhu J Y, et al.Effect of Cr content on the corrosion performance of low-Cr alloy steel in a CO2 environment[J]. Appl. Surf. Sci., 2016, 379: 39 | [5] | Kim M, Kim S W, Yoon S H, et al.Effects of Cr content in amorphous ribbons (Fe0.79C0.11Si0.02B0.08)100-xCrx on their corrosion resistance[J]. Korean J. Met. Mater., 2014, 52: 129 | [6] | Andreev Y Y, Safonov I A, Doub A V.Thermodynamic model for estimating the composition of passive films and flade potential on Fe-Cr alloys in aqueous solutions[J]. Prot. Met. Phys. Chem. Surf., 2010, 46: 509 | [7] | Alekseev Y V, Plaskeev A V.On the interaction between components of an alloy during its dissolution in the passive state[J]. Prot. Met., 2002, 38: 310 | [8] | Xiao K, Zhang X, Dong C F, et al.Localized electrochemical impedance spectroscopy study on the corrosion behavior of Fe-Cr alloy in the solution with Cl- and SO42-[J]. J. Wuhan Univ. Technol.-Mater. Sci. Ed., 2012, 27: 27 | [9] | Costa D, Ribeiro T, Mercuri F, et al.Atomistic modeling of corrosion resistance: A first principles study of O2 reduction on the Al(111) surface covered with a thin hydroxylated alumina film[J]. Adv. Mater. Interfaces, 2014, 1: 1300072 | [10] | Zhang R L.Empirical Electron Theory of Solids and Molecules [M]. Changchun: Jilin Science and Technology Press, 1993: 83 | [10] | (张瑞林. 固体与分子经验电子理论 [M]. 长春: 吉林科学技术出版社, 1993: 83) | [11] | Wang Y F, Li Y K, Sun C, et al.Electronic theoretical model of static and dynamic strength of steels[J]. Acta Phys. Sin., 2014, 63: 126101 | [11] | (王云飞, 李云凯, 孙川等. 钢动静态强度计算的电子理论模型[J]. 物理学报, 2014, 63: 126101) | [12] | Li L, Xing S B.Catalytic effect analysis of metallic catalyst during diamond single crystal synthesis[J]. Acta. Metall. Sin.(Engl. Lett.), 2014, 27: 161 | [13] | Du A, Ma R N, Wen M, et al.Corrosion mechanism of intermetallic compound Fe2B in liquid zinc[J]. J. Tianjin Univ., 2010, 43: 633 | [13] | (杜安, 马瑞娜, 温鸣等. 金属间化合物Fe2B在液态锌中的腐蚀机制[J]. 天津大学学报, 2010, 43: 633) | [14] | Dai Y N.Binary Alloy Phase Diagrams [M]. Beijing: Science Press, 2009: 240 | [14] | (戴永年. 二元合金相图集 [M]. 北京: 科学出版社, 2009: 240) | [15] | Liu W D, Qu H, Liu Z L.Study on the stability of ductile β phase and the behaviors of alloying elements[J]. Rare Met. Mater. Eng., 2005, 34: 573 | [15] | (刘伟东, 屈华, 刘志林. 延性β相稳定性与合金元素合金化行为的研究[J]. 稀有金属材料与工程, 2005, 34: 573) | [16] | Xiao K, Dong C F, Zhang X, et al.Corrosion of carbon steel under epoxy-varnish coating studied by scanning Kelvin probe[J]. J. Wuhan Univ. Technol.-Mater. Sci. Ed., 2012, 27: 825 | [17] | Qu X S.Research on valence electron theoretics of corrosion resistance of austenitic stainless steels [D]. Jinzhou: Liaoning Institute of Technology, 2007 | [17] | (屈兴胜. 奥氏体不锈钢耐腐蚀性能的价电子理论研究 [D]. 锦州: 辽宁工学院, 2007) | [18] | Liu Z L, Li Z L, Liu W D.Interface Valence Electron Structure and Property [M]. Beijing: Science Press, 2002: 36(刘志林, 李志林, 刘伟东. 界面电子结构与界面性能 [M]. 北京: 科学出版社, 2002: 36) | [19] | Yin Y S, Gong H Y, Tan X Y, et al.Study on the interface electron structures of Fe3Al/Al2O3 nano/micro composite[J]. J. Synth. Cryst., 2003, 32: 99 | [19] | (尹衍升, 龚红宇, 谭训彦等. Fe3Al/Al2O3纳微米复合材料的界面电子结构研究[J]. 人工晶体学报, 2003, 32: 99) | [20] | Xu C Q, Cui C X.Investigation of the corrosion resistance of Mo-30W alloy against molten zinc by EET and BLD[J]. Rare Met. Mater. Eng., 2007, 36: 1558 | [20] | (许长庆, 崔春翔. 固体与分子经验电子论对Mo-30W合金耐液态锌腐蚀性能研究[J]. 稀有金属材料与工程, 2007, 36: 1558) | [21] | Fan R H, Yin W Z, Sun K N, et al.Influence of disordering on the magnetic properties of ordered iron aluminides[J]. J. Synth. Cryst., 2005, 34: 606 | [21] | (范润华, 尹文宗, 孙康宁等. 无序化对有序铁铝金属间化合物磁性的影响[J]. 人工晶体学报, 2005, 34: 606) | [22] | Gao Y J, Zhao M, Huang C G, et al.The microscopic mechanism interpret on a precipitate-free zones of γ phase in Al-Ag alloy[J]. Precious Met., 2005, 26(1): 1 | [22] | (高英俊, 赵妙, 黄创高等. Al-Ag合金γ相周围无沉淀带形成的机理研究[J]. 贵金属, 2005, 26(1): 1) | [23] | Zhang Z G, Hou P Y, Niu Y.Oxidation of Fe-xCr-10Al (x=0, 5, 10) alloys at 900 ℃: A novel example of the third element effect[J]. Acta. Metall. Sin., 2005, 41: 649 | [23] | (张志刚, Hou P Y, 牛焱. Fe-xCr-10Al (x=0, 5, 10)合金在900 ℃的氧化: 第三组元作用的新例子[J]. 金属学报, 2005, 41: 649) | [24] | Kasparova O V, Baldokhin Y V, Solomatin A S.On a correlation between the electronic structure and passivability of Fe-Cr alloys[J]. Prot. Met., 2005, 41: 117 | [25] | Zhang D Q, Xu J J, Zhao G Q, et al.Oxidation characteristic of ferritic-martensitic steel T91 in water-vapour atmosphere[J]. Chin. J. Mater. Res., 2008, 22: 599 | [25] | (张都清, 徐敬军, 赵国群等. 9Cr-1Mo钢在含水蒸汽气氛中的氧化行为[J]. 材料研究学报, 2008, 22: 599) | [26] | Zeng C L, Wang W, Wu W T.A study of the corrosion of Fe-Cr alloys in molten (Li-K)2CO3 at 650 ℃[J]. Acta. Metall. Sin., 2000, 36: 651 | [26] | (曾潮流, 王文, 吴维?. Fe-Cr合金在650 ℃熔融(Li-K)2CO3中的腐蚀行为[J]. 金属学报, 2000, 36: 651) |
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|