Please wait a minute...
Acta Metall Sin  2017, Vol. 53 Issue (5): 622-630    DOI: 10.11900/0412.1961.2016.00269
Orginal Article Current Issue | Archive | Adv Search |
Electronic Theoretical Study of the Influence of Cr on Corrosion Resistance of Fe-Cr Alloy
Yao WANG1,Chunfu LI1,Yuanhua LIN1,2()
1 School of Materials Science and Engineering, Southwest Petroleum University, Chengdu 610500, China
2 State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation,
Cite this article: 

Yao WANG,Chunfu LI,Yuanhua LIN. Electronic Theoretical Study of the Influence of Cr on Corrosion Resistance of Fe-Cr Alloy. Acta Metall Sin, 2017, 53(5): 622-630.

Download:  HTML  PDF(1268KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Based on the empirical electron theory (EET) of solids and molecules, the valence electron structure caculation results of Fe-Cr alloy containing (0~30%)Cr were analyzed semi-quantitatively. The electron density differences of interface (Δρ) between Fe-Cr alloy and Cr2O3, Fe2O3 passivation films were calculated. According to the results, adding Cr to α-Fe matrix can strengthen the matrix by improving the number of hybid atomic orbitals σn, the number of the strongest bond covalent electron pairs nA and the strongest covalent bond energy EA of Fe-Cr alloy. Once the content of Cr rises up to 12.52% and 24.3%, the corrosion resistance of Fe-Cr alloy is improved because of Cr being changed to a higher hybrid level, where Cr becomes more unstable and easily reacts with environment to form a complete passivation layer of Cr2O3. Moreover, among the electronic density differences of 24 low-index faces between Fe-Cr and Cr2O3, Fe2O3, only the Δρ of Fe-Cr(112)/ Cr2O3(0001), Fe-Cr(112)/Cr2O3 (101?0)Cr,Fe-Cr(112)/Fe2O3(112?0) are lower than 10%. For the matrix with same content of Cr, the Δρ between Fe-Cr(112) and Cr2O3(101?0)Cr is the lowest, but the number of hybid atomic orbitals σ satisfied Δρ<10% is the largest. Δρ (σ) of Fe-Cr(112)/Cr2O3(0001) and Fe-Cr(112)/Fe2O3(112?0) is decreased (increased) with the increase of Cr, therefore the interface bonding strength between Cr2O3, Fe2O3 and matrix will be enhanced, it has been found that the corrosion resistance of Fe-24.3%Cr is better. The calculation results of variation of Fe-Cr corrosion resistance with Cr content are in better agreement with Tammann's law.

Key words:  empirical      electron      theory,      corrosion      resistance,      passivation      film,      interfacial      electron      density      difference,      Tammann's      law     
Received:  01 July 2016     
Fund: Supported by National High Technology Research and Development Program of China (No.2006AA06A105) and Fund of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation (No.PLN0609)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2016.00269     OR     https://www.ams.org.cn/EN/Y2017/V53/I5/622

Fig.1  Unit cell structure of M (M is considered to be an average atom of Fe and Cr; A, B are the

non-negligible covalent bonds)

Fig.2  Atomic arrangement of X2O3 (X=Cr, Fe) in different crystallographic faces(a) (0001) (b) (101?0)O (c) (101?0)X (d) (112?0)
Crystal face Bond Ia na S / cm2 ρ / nm-2
(110) M-M 4 0.3875 0.1162 14.8559
M-M 2 0.0882
(100) M-M 4 0.0882 0.0822 4.2942
(112) M-M 27 0.3875 0.0503 2.2004
Table 1  Interfacial electron densities of Fe-5%Cr (atomic fraction) alloy on the different crystal faces
Crystal face Bond Ia na S / cm2 ρ / nm-2
Cr2O3 Fe2O3 Formula Cr2O3 Fe2O3 Cr2O3 Fe2O3
(0001) O1-O3 6 0.0261 0.0340 32a02 0.2123 0.2187 1.0930 1.2756
O1-O2 12 0.0063 0.0102
(101?0)Cr O1-O2 6 0.0063 0.0102 a0c 0.6736 0.6921 0.0560 0.0884
(101?0)X X1-X2 2 0.4076 0.2186 a0c 0.6736 0.6921 1.9754 1.0957
X1-X3 2 0.2327 0.1456
X1-X4 2 0.0201 0.0111
X1-X5 2 0.0049 0.0039
(112?0) X-O2 4 0.9528 1.1290 3a0c 1.1667 1.1988 6.2157 6.2597
X-O1 4 0.8024 0.6689
X-O3 4 0.0032 0.0033
O1-O3 6 0.0261 0.0340
O1-O4 6 0.0103 0.0160
Table 2  Interfacial electron densities (ρ) of Cr2O3 and Fe2O3
Atomic fraction Atomic state σn nA EA
of Cr / % Hybridization ncFe Hybridization ncCr kJmol-1
level of Fe level of Cr
0 8 3.5955 - - 3 0.3835 59.8761
1 8 3.5955 1 4 54 0.3840 60.0479
2 8 3.5955 1 4 54 0.3844 60.2197
3 8 3.5955 1 4 54 0.3848 60.3926
4 8 3.5955 3 3.9515 54 0.3851 60.6105
5 8 3.5955 5 3.8779 54 0.3851 60.7721
6 8 3.5955 5 3.8779 54 0.3854 60.8624
7 8 3.5955 5 3.8779 54 0.3857 61.0289
8 7 3.5560 1 4 61 0.3831 60.1916
9 7 3.5560 1 4 65 0.3836 60.3758
10 7 3.5560 2 3.9851 65 0.3839 60.6539
11 7 3.5560 3 3.9515 67 0.3840 60.8699
12 7 3.5560 4 3.9360 67 0.3842 61.0611
12.50 7 3.5560 4 3.9360 68 0.3844 61.1598
12.52 9 3.7743 13 3.1290 68 0.3940 65.3692
13 9 3.7743 13 3.1290 68 0.3937 65.3777
14 7 3.5560 5 3.8779 65 0.3841 61.3981
15 7 3.5560 5 3.8779 64 0.3845 61.6811
16 7 3.5560 5 3.8779 64 0.3848 61.7875
17 9 3.7743 11 3.2932 60 0.3939 65.9435
18 9 3.7743 11 3.2932 58 0.3934 65.9905
19 9 3.7743 10 3.3538 61 0.3941 66.2459
20 9 3.7743 10 3.3538 63 0.3937 66.3043
21 9 3.7743 10 3.3538 64 0.3932 66.3630
22 9 3.7743 9 3.3972 65 0.3938 66.5806
23 9 3.7743 9 3.3972 69 0.3934 66.5781
24 9 3.7743 9 3.3972 71 0.3930 66.7128
24.3 10 3.9723 13 3.1290 71 0.4019 70.2113
25 10 3.9723 13 3.1290 73 0.4013 70.1827
26 10 3.9723 12 3.1635 72 0.4013 70.3102
27 10 3.9723 12 3.1635 70 0.4004 70.2761
28 8 3.5955 6 3.6807 75 0.3861 64.0870
29 8 3.5955 6 3.6807 76 0.3862 64.2539
30 8 3.5955 6 3.6807 78 0.3863 64.6460
Table 3  Vanlance electron structures of Fe-Cr alloy
Fig.3  Number of hybrid atomic orbital σn and EA of different Fe-Cr alloys
Fig.4  Hybrid levels of Fe (a) and Cr (b) in different Fe-Cr alloys
[1] Chen K M.Corrosion and Protection of Process Equipment [M]. Beijing: Chemical Industry Press, 2001: 84
[1] (陈匡民. 过程装备腐蚀与防护 [M]. 北京: 化学工业出版社, 2001: 84)
[2] Chavchanidze A S, Krementulo A V.Influence of electron structure on the corrosional resistance of iron-based solid solutions in aggre-ssive media[J]. Steel. Transl., 2000, 30: 74
[3] Shcherbakov A I.Theory of dissolution of binary alloys and the Tamman rule[J]. Prot. Met., 2005, 41: 30
[4] Xu L N, Wang B, Zhu J Y, et al.Effect of Cr content on the corrosion performance of low-Cr alloy steel in a CO2 environment[J]. Appl. Surf. Sci., 2016, 379: 39
[5] Kim M, Kim S W, Yoon S H, et al.Effects of Cr content in amorphous ribbons (Fe0.79C0.11Si0.02B0.08)100-xCrx on their corrosion resistance[J]. Korean J. Met. Mater., 2014, 52: 129
[6] Andreev Y Y, Safonov I A, Doub A V.Thermodynamic model for estimating the composition of passive films and flade potential on Fe-Cr alloys in aqueous solutions[J]. Prot. Met. Phys. Chem. Surf., 2010, 46: 509
[7] Alekseev Y V, Plaskeev A V.On the interaction between components of an alloy during its dissolution in the passive state[J]. Prot. Met., 2002, 38: 310
[8] Xiao K, Zhang X, Dong C F, et al.Localized electrochemical impedance spectroscopy study on the corrosion behavior of Fe-Cr alloy in the solution with Cl- and SO42-[J]. J. Wuhan Univ. Technol.-Mater. Sci. Ed., 2012, 27: 27
[9] Costa D, Ribeiro T, Mercuri F, et al.Atomistic modeling of corrosion resistance: A first principles study of O2 reduction on the Al(111) surface covered with a thin hydroxylated alumina film[J]. Adv. Mater. Interfaces, 2014, 1: 1300072
[10] Zhang R L.Empirical Electron Theory of Solids and Molecules [M]. Changchun: Jilin Science and Technology Press, 1993: 83
[10] (张瑞林. 固体与分子经验电子理论 [M]. 长春: 吉林科学技术出版社, 1993: 83)
[11] Wang Y F, Li Y K, Sun C, et al.Electronic theoretical model of static and dynamic strength of steels[J]. Acta Phys. Sin., 2014, 63: 126101
[11] (王云飞, 李云凯, 孙川等. 钢动静态强度计算的电子理论模型[J]. 物理学报, 2014, 63: 126101)
[12] Li L, Xing S B.Catalytic effect analysis of metallic catalyst during diamond single crystal synthesis[J]. Acta. Metall. Sin.(Engl. Lett.), 2014, 27: 161
[13] Du A, Ma R N, Wen M, et al.Corrosion mechanism of intermetallic compound Fe2B in liquid zinc[J]. J. Tianjin Univ., 2010, 43: 633
[13] (杜安, 马瑞娜, 温鸣等. 金属间化合物Fe2B在液态锌中的腐蚀机制[J]. 天津大学学报, 2010, 43: 633)
[14] Dai Y N.Binary Alloy Phase Diagrams [M]. Beijing: Science Press, 2009: 240
[14] (戴永年. 二元合金相图集 [M]. 北京: 科学出版社, 2009: 240)
[15] Liu W D, Qu H, Liu Z L.Study on the stability of ductile β phase and the behaviors of alloying elements[J]. Rare Met. Mater. Eng., 2005, 34: 573
[15] (刘伟东, 屈华, 刘志林. 延性β相稳定性与合金元素合金化行为的研究[J]. 稀有金属材料与工程, 2005, 34: 573)
[16] Xiao K, Dong C F, Zhang X, et al.Corrosion of carbon steel under epoxy-varnish coating studied by scanning Kelvin probe[J]. J. Wuhan Univ. Technol.-Mater. Sci. Ed., 2012, 27: 825
[17] Qu X S.Research on valence electron theoretics of corrosion resistance of austenitic stainless steels [D]. Jinzhou: Liaoning Institute of Technology, 2007
[17] (屈兴胜. 奥氏体不锈钢耐腐蚀性能的价电子理论研究 [D]. 锦州: 辽宁工学院, 2007)
[18] Liu Z L, Li Z L, Liu W D.Interface Valence Electron Structure and Property [M]. Beijing: Science Press, 2002: 36(刘志林, 李志林, 刘伟东. 界面电子结构与界面性能 [M]. 北京: 科学出版社, 2002: 36)
[19] Yin Y S, Gong H Y, Tan X Y, et al.Study on the interface electron structures of Fe3Al/Al2O3 nano/micro composite[J]. J. Synth. Cryst., 2003, 32: 99
[19] (尹衍升, 龚红宇, 谭训彦等. Fe3Al/Al2O3纳微米复合材料的界面电子结构研究[J]. 人工晶体学报, 2003, 32: 99)
[20] Xu C Q, Cui C X.Investigation of the corrosion resistance of Mo-30W alloy against molten zinc by EET and BLD[J]. Rare Met. Mater. Eng., 2007, 36: 1558
[20] (许长庆, 崔春翔. 固体与分子经验电子论对Mo-30W合金耐液态锌腐蚀性能研究[J]. 稀有金属材料与工程, 2007, 36: 1558)
[21] Fan R H, Yin W Z, Sun K N, et al.Influence of disordering on the magnetic properties of ordered iron aluminides[J]. J. Synth. Cryst., 2005, 34: 606
[21] (范润华, 尹文宗, 孙康宁等. 无序化对有序铁铝金属间化合物磁性的影响[J]. 人工晶体学报, 2005, 34: 606)
[22] Gao Y J, Zhao M, Huang C G, et al.The microscopic mechanism interpret on a precipitate-free zones of γ phase in Al-Ag alloy[J]. Precious Met., 2005, 26(1): 1
[22] (高英俊, 赵妙, 黄创高等. Al-Ag合金γ相周围无沉淀带形成的机理研究[J]. 贵金属, 2005, 26(1): 1)
[23] Zhang Z G, Hou P Y, Niu Y.Oxidation of Fe-xCr-10Al (x=0, 5, 10) alloys at 900 ℃: A novel example of the third element effect[J]. Acta. Metall. Sin., 2005, 41: 649
[23] (张志刚, Hou P Y, 牛焱. Fe-xCr-10Al (x=0, 5, 10)合金在900 ℃的氧化: 第三组元作用的新例子[J]. 金属学报, 2005, 41: 649)
[24] Kasparova O V, Baldokhin Y V, Solomatin A S.On a correlation between the electronic structure and passivability of Fe-Cr alloys[J]. Prot. Met., 2005, 41: 117
[25] Zhang D Q, Xu J J, Zhao G Q, et al.Oxidation characteristic of ferritic-martensitic steel T91 in water-vapour atmosphere[J]. Chin. J. Mater. Res., 2008, 22: 599
[25] (张都清, 徐敬军, 赵国群等. 9Cr-1Mo钢在含水蒸汽气氛中的氧化行为[J]. 材料研究学报, 2008, 22: 599)
[26] Zeng C L, Wang W, Wu W T.A study of the corrosion of Fe-Cr alloys in molten (Li-K)2CO3 at 650 ℃[J]. Acta. Metall. Sin., 2000, 36: 651
[26] (曾潮流, 王文, 吴维?. Fe-Cr合金在650 ℃熔融(Li-K)2CO3中的腐蚀行为[J]. 金属学报, 2000, 36: 651)
[1] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[2] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[3] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[4] SI Yongli, XUE Jintao, WANG Xingfu, LIANG Juhua, SHI Zimu, HAN Fusheng. Effect of Cr Addition on the Corrosion Behavior of Twinning-Induced Plasticity Steel[J]. 金属学报, 2023, 59(7): 905-914.
[5] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[6] LI Xiaohan, CAO Gongwang, GUO Mingxiao, PENG Yunchao, MA Kaijun, WANG Zhenyao. Initial Corrosion Behavior of Carbon Steel Q235, Pipeline Steel L415, and Pressure Vessel Steel 16MnNi Under High Humidity and High Irradiation Coastal-Industrial Atmosphere in Zhanjiang[J]. 金属学报, 2023, 59(7): 884-892.
[7] ZHANG Qiliang, WANG Yuchao, LI Guangda, LI Xianjun, HUANG Yi, XU Yunze. Erosion-Corrosion Performance of EH36 Steel Under Sand Impacts of Different Particle Sizes[J]. 金属学报, 2023, 59(7): 893-904.
[8] ZHAO Pingping, SONG Yingwei, DONG Kaihui, HAN En-Hou. Synergistic Effect Mechanism of Different Ions on the Electrochemical Corrosion Behavior of TC4 Titanium Alloy[J]. 金属学报, 2023, 59(7): 939-946.
[9] CHEN Runnong, LI Zhaodong, CAO Yanguang, ZHANG Qifu, LI Xiaogang. Initial Corrosion Behavior and Local Corrosion Origin of 9%Cr Alloy Steel in ClContaining Environment[J]. 金属学报, 2023, 59(7): 926-938.
[10] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[11] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
[12] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
[13] WANG Jingyang, SUN Luchao, LUO Yixiu, TIAN Zhilin, REN Xiaomin, ZHANG Jie. Rare Earth Silicate Environmental Barrier Coating Material: High-Entropy Design and Resistance to CMAS Corrosion[J]. 金属学报, 2023, 59(4): 523-536.
[14] XU Linjie, LIU Hui, REN Ling, YANG Ke. Effect of Cu on In-Stent Restenosis and Corrosion Resistance of Ni-Ti Alloy[J]. 金属学报, 2023, 59(4): 577-584.
[15] HAN En-Hou, WANG Jianqiu. Effect of Surface State on Corrosion and Stress Corrosion for Nuclear Materials[J]. 金属学报, 2023, 59(4): 513-522.
No Suggested Reading articles found!