Please wait a minute...
Acta Metall Sin  2016, Vol. 52 Issue (8): 938-944    DOI: 10.11900/0412.1961.2015.00592
Orginal Article Current Issue | Archive | Adv Search |
EFFECTS OF ROLLING DEFORMATION ON TEXTURE AND LPSO PHASE OF SPRAY-DEPOSITED MAGNESIUM ALLOYS CONTAINING Nd
Zhenliang LI1(),Fei LIU1,Aiping YUAN1,Baoyu DUAN2,Xiaowei LI2,Yiming LI2
1 School of Materials and Metallurgy, Inner Mongolia University of Science &Technology, Baotou 014010, China.
2 Analysis and Test Center, Inner Mongolia University of Science & Technology, Baotou 014010, China
Cite this article: 

Zhenliang LI,Fei LIU,Aiping YUAN,Baoyu DUAN,Xiaowei LI,Yiming LI. EFFECTS OF ROLLING DEFORMATION ON TEXTURE AND LPSO PHASE OF SPRAY-DEPOSITED MAGNESIUM ALLOYS CONTAINING Nd. Acta Metall Sin, 2016, 52(8): 938-944.

Download:  HTML  PDF(828KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Mg alloys have been applied widely as structural materials over the past decades, with low density, high specific strength, stiffness, specific elastic modulus, and high recycling rate. However, their features of poor ductility and formability at room temperature have limited their application due to hexagonal close-packed crystal structure with less independent slip systems. Grain refinement and texture randomization are two means to activate other slip systems. In this work, the billets of Mg-9Al-3Zn-1Mn-6Ca-2Nd alloy produced by spraying deposition method (the Osprey process) were studied in order to analyze the effect of rolling deformation at 350 ℃ and pass reduction ε =20%, 25% and 30% on texture and microstructure evolution of an extruded size-asymmetry Mg alloy by SEM, TEM and XRD. The results show that under the condition of reduction of ε =20% at 350 ℃, a long-period stacking ordered phase with 24R structure was formed in (Ca, Nd)Al2 phase (C15 Laves phase ). All of basal texture (0002), prismatic texture {100}<0001>, and pyramidal texture {102} were activated, with pole density level weakened while pass reduction increased (ε =20%, 25% and 30%), namely, texture randomization achieved in Mg alloy, with main causes of nanometer-sized dispersed C15 phase impeding dislocation movement and sub-cells inducing the process of recrystallization.

Key words:  Mg alloy      size-asymmetry      texture      LPSO phase of Mg-Nd-Zn      C15 Laves phase     
Received:  16 November 2015     
Fund: Supported by National Natural Science Foundation of China (No.51364032)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2015.00592     OR     https://www.ams.org.cn/EN/Y2016/V52/I8/938

Fig.1  (0002), (100) and (102) pole figures of spray-deposited Mg alloy sheet after different reductions (ε—pass reduction) (a) ε =20% (b) ε =25% (c) ε =30%
Fig.2  SEM images of spray-deposited Mg alloy sheet after different reductions at 350 ℃ (a) ε =20% (b) ε =25% (c) ε =30%
Fig.3  TEM images and structural analysis of secondary phase in Mg alloy after reductions of ε =20% at 350 ℃ (a, b) TEM images of secondary phase in Mg alloy(c) SAED pattern of lamellar secondary phase in Fig.3b(d) HRTEM image of lamellar secondary phase in Fig.3b
Area Mass fraction / % Atomic fraction / %
Mg Al Ca Nd Zn Mg Al Ca Nd Zn
A 38.4 22.9 28.5 7.4 2.8 49.1 26.1 21.9 1.6 1.3
B 57.1 21.0 13.8 5.4 2.7 67.2 21.3 9.4 1.0 1.1
C 40.3 23.6 20.0 8.9 7.2 51.8 27.3 15.6 1.9 3.4
Table 1  EDS analytic results of areas A, B and C in Fig.3
[1] Yamasaki M, Anan T, Yoshimoto S, Kawamura Y.Scr Mater, 2005; 53: 799
[2] Li Z L, Jia G D.Spec Cast Nonferrous Alloy, 2015; 35: 923
[2] (李振亮, 贾国栋. 特种铸造及有色合金, 2015; 35: 923)
[3] Li Z L, Ren H P, Jin Z L, Zhang J, Chen W, Zhai J.Rare Met Mater Eng, 2014; 43: 2728
[3] (李振亮, 任慧平, 金自力, 张婧, 陈伟, 翟景. 稀有金属材料与工程, 2014; 43: 2728)
[4] Zhang X G, Meng L G, Fang C F, Peng P, Ja F, Hao H.Mater Sci Eng, 2013; A586: 19
[5] Cui C L, Zhu T L, Leng Z, Wu R Z, Zhang J H, Zhang M L.Acta Metall Sin, 2012; 48: 725
[5] (崔崇亮, 朱天龙, 冷哲, 巫瑞智, 张景怀, 张密林. 金属学报, 2012; 48: 725)
[6] Li Z L, Zhang J, Wang X W, Chen W, Zhai J.Chin Rare Earths, 2015; 36(3): 21
[6] (李振亮, 张婧, 王雪威, 陈伟, 翟景. 稀土, 2015; 36(3): 21)
[7] Suzuki A, Saddock N D, Jones J W, Pollock T M.Acta Mater, 2005; 53: 2823
[8] Koike J. Mater Sci Forum, 2003; 419-422: 189
[9] Tong L B, Li X H, Zhang H J.Mater Sci Eng, 2013; A563: 177
[10] Inoue A, Matsushita M, Kawamura Y, Amiya K, Hayashi K, Koike J.Mater Trans, 2002; 43: 580
[11] Matsuda M, Ii S, Kawamura Y, Ikuhara Y, Nishida M.Mater Sci Eng, 2004; A386: 447
[12] Wang L N, Yang P, Xia W J, Chen Z H, Chen D, Li X, Meng L.Acta Metall Sin, 2009; 45: 58
[12] (王丽娜, 杨平, 夏伟军, 陈振华, 陈鼎, 李萧, 孟利. 金属学报, 2009; 45: 58)
[13] Xia W J, Cai J G, Chen Z H, Chen G, Jiang J F.Chin J Nonferrous Met, 2010; 20: 1247
[13] (夏伟军, 蔡建国, 陈振华, 陈刚, 蒋俊峰. 中国有色金属学报, 2010; 20: 1247)
[14] Yuan A P. , Master Thesis University of Science and Technology Inner Mongolia, Baotou, 2015
[14] (袁爱萍. 内蒙古科技大学硕士学位论文 ,包头, 2015)
[15] Itoi T, Seimiya T, Kawamura Y, Hirohashi M.Scr Mater, 2004; 51: 107
[16] Chen Z H. Wrought Magnesium Alloy.Beijing: Chemical Industry Press, 2005: 60
[16] (陈振华. 变形镁合金. 北京: 化学工业出版社, 2005: 60)
[17] Chino Y, Kado M, Mabuchi M.Mater Sci Eng, 2008; A494: 343
[18] Chino Y, Kado M, Mabuchi M.Acta Mater, 2008; 56: 387
[19] Galiyev A, Kaibyshev R, Gottstein G.Acta Mater, 2001; 49: 1199
[20] Agnew S R, Duygulu ?.Int J Plast, 2005; 21: 1161
[21] Agnew S R, Yoo M H, Tomé C N.Acta Mater, 2001; 49: 4277
[22] Huang J F, Li Y B, Luo H R, Cui H, Cai Y H, Duan X J, Zhang J S.J Univ Sci Technol Beijing, 2008; 30: 408
[22] (黄进峰, 李永兵, 罗海荣, 崔华, 蔡元华, 段先进, 张济山. 北京科技大学学报, 2008; 30: 408)
[23] Meng Q, Cai Q W, Jiang H T, Hu S P, Li Z.J Univ Sci Technol Beijing, 2011; 33: 47
[23] (孟强, 蔡庆伍, 江海涛, 胡水平, 李振. 北京科技大学学报, 2011; 33: 47)
[24] Poliak E I, Jonas J J.Acta Mater, 1996; 44: 127
[25] Kawamura Y, Kasahara T, Izumi S, Yamasaki M.Scr Mater, 2006; 55: 453
[26] Inoue A, Kawamura Y, Matsushita M, Hayashi K, Koike J.J Mater Res, 2001; 16: 1894
[27] Suzuki A, Saddock N D, Jones J W, Pollock T M.Scr Mater, 2004; 51: 1005
[28] Abe E, Kawamura Y, Hayashi K, Inoue A.Acta Mater, 2002; 50: 3845
[29] Wang H M, Wang Y F.Mater Rev, 2010; 24: 467
[29] (王红梅, 王宇飞. 材料导报, 2010; 24: 467)
[30] Zhu Y M, Morton A J, Nie J F.Acta Mater, 2010; 58: 2936
[31] Zhu Y M, Morton A J, Nie J F.Acta Mater, 2012; 60: 6562
[32] Nishida M, Yamamuro T, Nagano M, Morizono Y, Kawamura Y. Mater Sci Forum, 2003; 419-422: 715
[33] Matsuura M, Konno K, Yoshida M, Nishijima M, Hiraga K.Mater Trans, 2006; 47: 1264
[1] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[2] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
[3] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[4] SHEN Zhao, WANG Zhipeng, HU Bo, LI Dejiang, ZENG Xiaoqin, DING Wenjiang. Research Progress on the Mechanisms Controlling High-Temperature Oxidation Resistance of Mg Alloys[J]. 金属学报, 2023, 59(3): 371-386.
[5] LOU Feng, LIU Ke, LIU Jinxue, DONG Hanwu, LI Shubo, DU Wenbo. Microstructures and Formability of the As-Rolled Mg- xZn-0.5Er Alloy Sheets at Room Temperature[J]. 金属学报, 2023, 59(11): 1439-1447.
[6] GONG Xiangpeng, WU Cuilan, LUO Shifang, SHEN Ruohan, YAN Jun. Effect of Natural Aging on Artificial Aging of an Al-2.95Cu-1.55Li-0.57Mg-0.18Zr Alloy at 160oC[J]. 金属学报, 2023, 59(11): 1428-1438.
[7] PENG Liming, DENG Qingchen, WU Yujuan, FU Penghuai, LIU Ziyi, WU Qianye, CHEN Kai, DING Wenjiang. Additive Manufacturing of Magnesium Alloys by Selective Laser Melting Technology: A Review[J]. 金属学报, 2023, 59(1): 31-54.
[8] FENG Di, ZHU Tian, ZANG Qianhao, LEE Yunsoo, FAN Xi, ZHANG Hao. Solution Behavior of Spray-Formed Hypereutectic AlSiCuMg Alloy[J]. 金属学报, 2022, 58(9): 1129-1140.
[9] WU Caihong, FENG Di, ZANG Qianhao, FAN Shichun, ZHANG Hao, LEE Yunsoo. Microstructure Evolution and Recrystallization Behavior During Hot Deformation of Spray Formed AlSiCuMg Alloy[J]. 金属学报, 2022, 58(7): 932-942.
[10] JIANG Weining, WU Xiaolong, YANG Ping, GU Xinfu, XIE Qingge. Formation of Dynamic Recrystallization Zone and Characteristics of Shear Texture in Surface Layer of Hot-Rolled Silicon Steel[J]. 金属学报, 2022, 58(12): 1545-1556.
[11] LUO Xuan, HAN Fang, HUANG Tianlin, WU Guilin, HUANG Xiaoxu. Microstructure and Mechanical Properties of Layered Heterostructured Mg-3Gd Alloy[J]. 金属学报, 2022, 58(11): 1489-1496.
[12] YANG Ping, WANG Jinhua, MA Dandan, PANG Shufang, CUI Feng'e. Influences of Composition on the Transformation-Controlled {100} Textures in High Silicon Electrical Steels Prepared by Mn-Removal Vacuum Annealing[J]. 金属学报, 2022, 58(10): 1261-1270.
[13] WANG Kaidong, LIU Yunzhong, ZHAN Qiangkun, HUANG Bin. Effect of Adding Methods of Nucleating Agent on Microstructure and Mechanical Properties of Zr Modified Al-Cu-Mg Alloys Prepared by Selective Laser Melting[J]. 金属学报, 2022, 58(10): 1281-1291.
[14] DING Ning, WANG Yunfeng, LIU Ke, ZHU Xunming, LI Shubo, DU Wenbo. Microstructure, Texture, and Mechanical Properties of Mg-8Gd-1Er-0.5Zr Alloy by Multi-Directional Forging at High Strain Rate[J]. 金属学报, 2021, 57(8): 1000-1008.
[15] YAN Mengqi, CHEN Liquan, YANG Ping, HUANG Lijun, TONG Jianbo, LI Huanfeng, GUO Pengda. Effect of Hot Deformation Parameters on the Evolution of Microstructure and Texture of β Phase in TC18 Titanium Alloy[J]. 金属学报, 2021, 57(7): 880-890.
No Suggested Reading articles found!