Please wait a minute...
Acta Metall Sin  2016, Vol. 52 Issue (8): 938-944    DOI: 10.11900/0412.1961.2015.00592
Orginal Article Current Issue | Archive | Adv Search |
EFFECTS OF ROLLING DEFORMATION ON TEXTURE AND LPSO PHASE OF SPRAY-DEPOSITED MAGNESIUM ALLOYS CONTAINING Nd
Zhenliang LI1(),Fei LIU1,Aiping YUAN1,Baoyu DUAN2,Xiaowei LI2,Yiming LI2
1 School of Materials and Metallurgy, Inner Mongolia University of Science &Technology, Baotou 014010, China.
2 Analysis and Test Center, Inner Mongolia University of Science & Technology, Baotou 014010, China
Download:  HTML  PDF(828KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Mg alloys have been applied widely as structural materials over the past decades, with low density, high specific strength, stiffness, specific elastic modulus, and high recycling rate. However, their features of poor ductility and formability at room temperature have limited their application due to hexagonal close-packed crystal structure with less independent slip systems. Grain refinement and texture randomization are two means to activate other slip systems. In this work, the billets of Mg-9Al-3Zn-1Mn-6Ca-2Nd alloy produced by spraying deposition method (the Osprey process) were studied in order to analyze the effect of rolling deformation at 350 ℃ and pass reduction ε =20%, 25% and 30% on texture and microstructure evolution of an extruded size-asymmetry Mg alloy by SEM, TEM and XRD. The results show that under the condition of reduction of ε =20% at 350 ℃, a long-period stacking ordered phase with 24R structure was formed in (Ca, Nd)Al2 phase (C15 Laves phase ). All of basal texture (0002), prismatic texture {100}<0001>, and pyramidal texture {102} were activated, with pole density level weakened while pass reduction increased (ε =20%, 25% and 30%), namely, texture randomization achieved in Mg alloy, with main causes of nanometer-sized dispersed C15 phase impeding dislocation movement and sub-cells inducing the process of recrystallization.

Key words:  Mg alloy      size-asymmetry      texture      LPSO phase of Mg-Nd-Zn      C15 Laves phase     
Received:  16 November 2015     
Fund: Supported by National Natural Science Foundation of China (No.51364032)

Cite this article: 

Zhenliang LI,Fei LIU,Aiping YUAN,Baoyu DUAN,Xiaowei LI,Yiming LI. EFFECTS OF ROLLING DEFORMATION ON TEXTURE AND LPSO PHASE OF SPRAY-DEPOSITED MAGNESIUM ALLOYS CONTAINING Nd. Acta Metall Sin, 2016, 52(8): 938-944.

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2015.00592     OR     https://www.ams.org.cn/EN/Y2016/V52/I8/938

Fig.1  (0002), (100) and (102) pole figures of spray-deposited Mg alloy sheet after different reductions (ε—pass reduction) (a) ε =20% (b) ε =25% (c) ε =30%
Fig.2  SEM images of spray-deposited Mg alloy sheet after different reductions at 350 ℃ (a) ε =20% (b) ε =25% (c) ε =30%
Fig.3  TEM images and structural analysis of secondary phase in Mg alloy after reductions of ε =20% at 350 ℃ (a, b) TEM images of secondary phase in Mg alloy(c) SAED pattern of lamellar secondary phase in Fig.3b(d) HRTEM image of lamellar secondary phase in Fig.3b
Area Mass fraction / % Atomic fraction / %
Mg Al Ca Nd Zn Mg Al Ca Nd Zn
A 38.4 22.9 28.5 7.4 2.8 49.1 26.1 21.9 1.6 1.3
B 57.1 21.0 13.8 5.4 2.7 67.2 21.3 9.4 1.0 1.1
C 40.3 23.6 20.0 8.9 7.2 51.8 27.3 15.6 1.9 3.4
Table 1  EDS analytic results of areas A, B and C in Fig.3
[1] Yamasaki M, Anan T, Yoshimoto S, Kawamura Y.Scr Mater, 2005; 53: 799
[2] Li Z L, Jia G D.Spec Cast Nonferrous Alloy, 2015; 35: 923
[2] (李振亮, 贾国栋. 特种铸造及有色合金, 2015; 35: 923)
[3] Li Z L, Ren H P, Jin Z L, Zhang J, Chen W, Zhai J.Rare Met Mater Eng, 2014; 43: 2728
[3] (李振亮, 任慧平, 金自力, 张婧, 陈伟, 翟景. 稀有金属材料与工程, 2014; 43: 2728)
[4] Zhang X G, Meng L G, Fang C F, Peng P, Ja F, Hao H.Mater Sci Eng, 2013; A586: 19
[5] Cui C L, Zhu T L, Leng Z, Wu R Z, Zhang J H, Zhang M L.Acta Metall Sin, 2012; 48: 725
[5] (崔崇亮, 朱天龙, 冷哲, 巫瑞智, 张景怀, 张密林. 金属学报, 2012; 48: 725)
[6] Li Z L, Zhang J, Wang X W, Chen W, Zhai J.Chin Rare Earths, 2015; 36(3): 21
[6] (李振亮, 张婧, 王雪威, 陈伟, 翟景. 稀土, 2015; 36(3): 21)
[7] Suzuki A, Saddock N D, Jones J W, Pollock T M.Acta Mater, 2005; 53: 2823
[8] Koike J. Mater Sci Forum, 2003; 419-422: 189
[9] Tong L B, Li X H, Zhang H J.Mater Sci Eng, 2013; A563: 177
[10] Inoue A, Matsushita M, Kawamura Y, Amiya K, Hayashi K, Koike J.Mater Trans, 2002; 43: 580
[11] Matsuda M, Ii S, Kawamura Y, Ikuhara Y, Nishida M.Mater Sci Eng, 2004; A386: 447
[12] Wang L N, Yang P, Xia W J, Chen Z H, Chen D, Li X, Meng L.Acta Metall Sin, 2009; 45: 58
[12] (王丽娜, 杨平, 夏伟军, 陈振华, 陈鼎, 李萧, 孟利. 金属学报, 2009; 45: 58)
[13] Xia W J, Cai J G, Chen Z H, Chen G, Jiang J F.Chin J Nonferrous Met, 2010; 20: 1247
[13] (夏伟军, 蔡建国, 陈振华, 陈刚, 蒋俊峰. 中国有色金属学报, 2010; 20: 1247)
[14] Yuan A P. , Master Thesis University of Science and Technology Inner Mongolia, Baotou, 2015
[14] (袁爱萍. 内蒙古科技大学硕士学位论文 ,包头, 2015)
[15] Itoi T, Seimiya T, Kawamura Y, Hirohashi M.Scr Mater, 2004; 51: 107
[16] Chen Z H. Wrought Magnesium Alloy.Beijing: Chemical Industry Press, 2005: 60
[16] (陈振华. 变形镁合金. 北京: 化学工业出版社, 2005: 60)
[17] Chino Y, Kado M, Mabuchi M.Mater Sci Eng, 2008; A494: 343
[18] Chino Y, Kado M, Mabuchi M.Acta Mater, 2008; 56: 387
[19] Galiyev A, Kaibyshev R, Gottstein G.Acta Mater, 2001; 49: 1199
[20] Agnew S R, Duygulu ?.Int J Plast, 2005; 21: 1161
[21] Agnew S R, Yoo M H, Tomé C N.Acta Mater, 2001; 49: 4277
[22] Huang J F, Li Y B, Luo H R, Cui H, Cai Y H, Duan X J, Zhang J S.J Univ Sci Technol Beijing, 2008; 30: 408
[22] (黄进峰, 李永兵, 罗海荣, 崔华, 蔡元华, 段先进, 张济山. 北京科技大学学报, 2008; 30: 408)
[23] Meng Q, Cai Q W, Jiang H T, Hu S P, Li Z.J Univ Sci Technol Beijing, 2011; 33: 47
[23] (孟强, 蔡庆伍, 江海涛, 胡水平, 李振. 北京科技大学学报, 2011; 33: 47)
[24] Poliak E I, Jonas J J.Acta Mater, 1996; 44: 127
[25] Kawamura Y, Kasahara T, Izumi S, Yamasaki M.Scr Mater, 2006; 55: 453
[26] Inoue A, Kawamura Y, Matsushita M, Hayashi K, Koike J.J Mater Res, 2001; 16: 1894
[27] Suzuki A, Saddock N D, Jones J W, Pollock T M.Scr Mater, 2004; 51: 1005
[28] Abe E, Kawamura Y, Hayashi K, Inoue A.Acta Mater, 2002; 50: 3845
[29] Wang H M, Wang Y F.Mater Rev, 2010; 24: 467
[29] (王红梅, 王宇飞. 材料导报, 2010; 24: 467)
[30] Zhu Y M, Morton A J, Nie J F.Acta Mater, 2010; 58: 2936
[31] Zhu Y M, Morton A J, Nie J F.Acta Mater, 2012; 60: 6562
[32] Nishida M, Yamamuro T, Nagano M, Morizono Y, Kawamura Y. Mater Sci Forum, 2003; 419-422: 715
[33] Matsuura M, Konno K, Yoshida M, Nishijima M, Hiraga K.Mater Trans, 2006; 47: 1264
[1] YU Lei,LUO Haiwen. Effect of Partial Recrystallization Annealing on Magnetic Properties and Mechanical Properties of Non-Oriented Silicon Steel[J]. 金属学报, 2020, 56(3): 291-300.
[2] CHENG Chao,CHEN Zhiyong,QIN Xushan,LIU Jianrong,WANG Qingjiang. Microstructure, Texture and Mechanical Property ofTA32 Titanium Alloy Thick Plate[J]. 金属学报, 2020, 56(2): 193-202.
[3] Xin LI,Yuecheng DONG,Zhenhua DAN,Hui CHANG,Zhigang FANG,Yanhua GUO. Corrosion Behavior of Ultrafine Grained Pure Ti Processed by Equal Channel Angular Pressing[J]. 金属学报, 2019, 55(8): 967-975.
[4] Liping DENG,Kaixuan CUI,Bingshu WANG,Hongliang XIANG,Qiang LI. Microstructure and Texture Evolution of AZ31 Mg Alloy Processed by Multi-Pass Compressing Under Room Temperature[J]. 金属学报, 2019, 55(8): 976-986.
[5] Zheng LIU,Jianrong LIU,Zibo ZHAO,Lei WANG,Qingjiang WANG,Rui YANG. Microstructure and Tensile Property of TC4 Alloy Produced via Electron Beam Rapid Manufacturing[J]. 金属学报, 2019, 55(6): 692-700.
[6] Houlong LIU,Mingyu MA,Lingling LIU,Liangliang WEI,Liqing CHEN. Effect of Hot Band Annealing Processes on Texture and Formability of 19Cr2Mo1W Ferritic Stainless Steel[J]. 金属学报, 2019, 55(5): 566-574.
[7] Dechun REN, Huhu SU, Huibo ZHANG, Jian WANG, Wei JIN, Rui YANG. Effect of Cold Rotary-Swaging Deformation on Microstructure and Tensile Properties of TB9 Titanium Alloy[J]. 金属学报, 2019, 55(4): 480-488.
[8] Yubi GAO, Yutian DING, Jianjun CHEN, Jiayu XU, Yuanjun MA, Dong ZHANG. Evolution of Microstructure and Texture During Cold Deformation of Hot-Extruded GH3625 Alloy[J]. 金属学报, 2019, 55(4): 547-554.
[9] Chen GU, Ping YANG, Weimin MAO. The Influence of Rolling Process on the Microstructure, Texture and Magnetic Properties of Low Grades Non-Oriented Electrical Steel After Phase Transformation Annealing[J]. 金属学报, 2019, 55(2): 181-190.
[10] ZHOU Bo, SUI Manling. Generation and Interaction Mechanism of Tension Kink Band in AZ31 Magnesium Alloy[J]. 金属学报, 2019, 55(12): 1512-1518.
[11] SHI Zhangzhi, ZHANG Min, HUANG Xuefei, LIU Xuefeng, ZHANG Wenzheng. Research Progress in Age-Hardenable Mg-Sn Based Alloys[J]. 金属学报, 2019, 55(10): 1231-1242.
[12] Jinhui LIU, Yingwei SONG, Dayong SHAN, En-Hou HAN. Comparative Study on Corrosion Behavior of Cast and Forged Mg-5Y-7Gd-1Nd-0.5Zr Alloys[J]. 金属学报, 2018, 54(8): 1141-1149.
[13] Lina WANG, Ping YANG, Kai LI, Feng'e CUI, Weimin MAO. Phase Transformation and Texture Evolution During Cold Rolling and α'-M Reversion in High Manganese TRIP Steel[J]. 金属学报, 2018, 54(12): 1756-1766.
[14] Zongyi MA, Qiao SHANG, Dingrui NI, Bolv XIAO. Friction Stir Welding of Magnesium Alloys: A Review[J]. 金属学报, 2018, 54(11): 1597-1617.
[15] Yizhe MAO, Jianguo LI, Lei FENG. Effect of Coarse β(Al3Mg2) Phase on Microstructure Evolution in 573 K Annealed Al-10Mg Alloy by Uniaxial Compression[J]. 金属学报, 2018, 54(10): 1451-1460.
No Suggested Reading articles found!