Please wait a minute...
Acta Metall Sin  2016, Vol. 52 Issue (11): 1388-1394    DOI: 10.11900/0412.1961.2016.00077
Orginal Article Current Issue | Archive | Adv Search |
MICROSTRUCTURES AND MECHANICAL PROPERTIES OF DUAL-BEAM LASER KEYHOLE WELDED JOINTS OF ALUMINUM ALLOYS TO STAINLESS STEELS
Feng PAN,Li CUI(),Wei QIAN,Dingyong HE,Shizhong WEI
School of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
Cite this article: 

Feng PAN,Li CUI,Wei QIAN,Dingyong HE,Shizhong WEI. MICROSTRUCTURES AND MECHANICAL PROPERTIES OF DUAL-BEAM LASER KEYHOLE WELDED JOINTS OF ALUMINUM ALLOYS TO STAINLESS STEELS. Acta Metall Sin, 2016, 52(11): 1388-1394.

Download:  HTML  PDF(1098KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Aluminum alloy and steel thin sheets have been mostly used in the automotive industry to get a lightweight car body. Nowadays several studies are focused on the joining of aluminum alloy to steel by new welding methods especially by laser welding. In this work dual-beam fiber laser keyhole welding was introduced to joining of 1.5 mm-thick aluminum alloys to 1.8 mm-thick 304 stainless steels in an overlap joint configure. The influences of different laser focusing positions on the weld appearance, interface microstructures and tensile mechanical resistance of the welded joints were studied. As a result, the good weld appearance of the aluminum alloy to stainless steel joints were obtained by dual-beam fiber laser keyhole welding process without any filler materials. The thickness of the intermetallic compound layer of the joint interface is comparatively thin when the laser beam with low energy is focusing on the front. The nano-hardness testing results show that the average hardness of intermetallic compound layer is 9.61 GPa, which is significantly higher than that of the parent stainless steel of 4.12 GPa and aluminum alloy of 1.09 GPa. The fracture of the welded joints occurs on the aluminum alloy/stainless steel interface layer. The highest mechanical resistance of 131 N/mm can be obtained by the low energy laser beam focused on the front.

Key words:  aluminum      alloy/stainless      steel      dissimilar      alloy,      dual-laser      beam,      laser      deep      penetration      welding,      intermetallic      compound      (IMC)     
Received:  09 March 2016     
Fund: Supported by National Natural Science Foundation of China (No.51475006) and Key Program of Research Foundation of Education Bureau of Beijing and Beijing Natural Science Foundation of B Category (No.KZ201610005004)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2016.00077     OR     https://www.ams.org.cn/EN/Y2016/V52/I11/1388

Fig.1  Schematic of dual-beam laser keyhole welding of Al alloy to stainless steel
Fig.2  Top bead appearances of dual-laser beam welds (a) low power laser in front (b) low power laser in behind
Fig.3  OM images (a, b) and high magnified images near rectangular areas (c, d) of dual-beam laser welded joints of Al alloys to stainless steels with low power laser in front (a, c) and in behind (b, d) (HAZ—heat affected zone, IMC—intermetallic compound)
Fig.4  SEM images in the interface of Al alloys/stainless steels with low power laser in front (a) and in behind (b)
Fig.5  SEM image (a) and EDS line scanning analysis (b) of IMC at interface of the Al alloy/stainless steel
Fig.6  Nanoindentation load-displacement curve
Fig.7  OM images of fractured joint in the cross section direction

(a) whole joint (b) Al alloy side (c) stainless steel side

Fig.8  SEM images of fractured joint zone I (a) and zone II (b) in Fig.7
Fig.9  XRD spectrum taken from the fracture surfaces of the joints
[1] Liu B, Peng C Q, Wang R C, Wang X F, Li T T.Chin J Nonferrous Met, 2010; 20: 1705
[1] (刘兵, 彭超群, 王日初, 王小锋, 李婷婷. 中国有色金属学报, 2010; 20: 1705)
[2] Wang Z T, Zhang X H.Light Alloy Fabrication Technol, 2011; 39(2): 1
[2] (王祝堂, 张新华. 轻合金加工技术, 2011; 39(2): 1)
[3] Zhang W Z.Master Thesis, Dalian University of Technology, 2009
[3] (张维哲. 大连理工大学硕士学位论文, 2009)
[4] Ma K, Chen S H, Huang J H, Xia J, Zhang H, Zhao X K.Appl Laser, 2010; 30: 493
[4] (马柯, 陈树海, 黄继华, 夏军, 张华, 赵兴科. 应用激光, 2010; 30: 493)
[5] Lu J X, Yang W X, Wu S K, Zhao X D, Xiao R S.Acta Metall Sin (Engl Lett), 2014; 27: 670
[6] Zhou D W, Peng Y, Xu S H, Liu J S.Acta Metall Sin, 2013; 49: 959
[6] (周惦武, 彭艳, 徐少华, 刘金水. 金属学报, 2013; 49: 959)
[7] Zhou D W, Wu P, Peng L, Zhang Y, Chen G Y.Chin J Nonferrous Met, 2012; 22: 1738
[7] (周惦武, 吴平, 彭利, 张屹, 陈根余. 中国有色金属学报, 2012; 22: 1738)
[8] Ma J J, Masoud H, Carlson B, Kovacevic R.Mater Des, 2014; 58: 390
[9] Chen S H, Huang J H, Yang D D, Ma K, Zhang H.Trans China Weld, 2012; 33(8): 9
[9] (陈树海, 黄继华, 杨冬冬, 马柯, 张华. 焊接学报, 2012; 33(8): 9)
[10] Zhang S Z.Master Thesis, Lanzhou University of Technology, 2012
[10] (张诗正. 兰州理工大学硕士学位论文, 2012)
[11] Zhang D W.Master Thesis, Harbin Institute of Technology, 2010
[11] (张东卫. 哈尔滨工业大学硕士学位论文, 2010)
[12] Xiao R S, Dong P, Zhao X D.Chin J Lasers, 2011; 38(6): 28
[12] (肖荣诗, 董鹏, 赵旭东. 中国激光, 2011; 38(6): 28)
[13] Torkamany M J, Tahamtan S, Sabbaghzadeh J.Mater Des, 2010; 31: 458
[14] David A K, Team P.Mater Des, 2014; 54: 184
[15] Sierra G, Peyre P, Deschaux-Beaume F, Stuart D, Fras D.Mater Sci Eng, 2007; 447: 197
[16] Li L Q, Chen Y B, Tao W.Chin J Lasers, 2008; 35: 1783
[16] (李俐群, 陈彦宾, 陶汪. 中国激光, 2008; 35: 1783)
[17] Huang Y, Wang C M, Duan Z C, Hu L J, Hu X Y.Machinery, 2006; 44(5): 19
[17] (黄禹, 王春明, 段正澄, 胡伦骥, 胡席远. 机械制造, 2006; 44(5): 19)
[18] Yang J, Li X Y, Chen L, Gong S L, Li Q Y.Rare Met Mater Eng, 2011; 40: 871
[18] (杨璟, 李晓延, 陈俐, 巩水利, 李巧艳. 稀有金属材料与工程, 2011; 40: 871)
[19] Harooni M, Carlson B, Kovacevic R.Opt Laser Technol, 2014; 56: 247
[20] Harooni M, Ma J J, Carlson B, Kovacevic R.J Mater Process Technol, 2015; 216: 114
[21] Laukant H, Wallmann C, Korte M, Glatzel U. Adv Mater Res#/magtechI #, 2005; 6-8: 163
[22] Li L Q, Tan C W, Chen Y B, Guo W, Mei C X.J Mater Process Technol, 2013; 213: 361
[23] Tan C W, Mei C X, Li L Q, Dai J M, Guo W.Chin J Nonferrous Met, 2012; 22: 1577
[23] (檀财旺, 梅长兴, 李俐群, 戴景民, 郭伟. 中国有色金属学报, 2012; 22: 1577)
[24] Shi Y, Zhang H, Watanabe T, Tang J G.Opt Lasers Eng, 2010; 48: 732
[25] Qin G L, Lin S Y.Trans China Weld, 2006; 27(1): 81(秦国梁, 林尚扬. 焊接学报, 2006; 27(1): 81)
[1] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[2] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[3] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[4] DU Jinhui, BI Zhongnan, QU Jinglong. Recent Development of Triple Melt GH4169 Alloy[J]. 金属学报, 2023, 59(9): 1159-1172.
[5] LI Jiarong, DONG Jianmin, HAN Mei, LIU Shizhong. Effects of Sand Blasting on Surface Integrity and High Cycle Fatigue Properties of DD6 Single Crystal Superalloy[J]. 金属学报, 2023, 59(9): 1201-1208.
[6] MA Dexin, ZHAO Yunxing, XU Weitai, WANG Fu. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. 金属学报, 2023, 59(9): 1279-1290.
[7] CHEN Jia, GUO Min, YANG Min, LIU Lin, ZHANG Jun. Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1209-1220.
[8] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[9] JIANG He, NAI Qiliang, XU Chao, ZHAO Xiao, YAO Zhihao, DONG Jianxin. Sensitive Temperature and Reason of Rapid Fatigue Crack Propagation in Nickel-Based Superalloy[J]. 金属学报, 2023, 59(9): 1190-1200.
[10] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[11] FENG Qiang, LU Song, LI Wendao, ZHANG Xiaorui, LI Longfei, ZOU Min, ZHUANG Xiaoli. Recent Progress in Alloy Design and Creep Mechanism of γ'-Strengthened Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1125-1143.
[12] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[13] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[14] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[15] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
No Suggested Reading articles found!