Please wait a minute...
Acta Metall Sin  2016, Vol. 52 Issue (11): 1388-1394    DOI: 10.11900/0412.1961.2016.00077
Orginal Article Current Issue | Archive | Adv Search |
MICROSTRUCTURES AND MECHANICAL PROPERTIES OF DUAL-BEAM LASER KEYHOLE WELDED JOINTS OF ALUMINUM ALLOYS TO STAINLESS STEELS
Feng PAN,Li CUI(),Wei QIAN,Dingyong HE,Shizhong WEI
School of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
Download:  HTML  PDF(1098KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Aluminum alloy and steel thin sheets have been mostly used in the automotive industry to get a lightweight car body. Nowadays several studies are focused on the joining of aluminum alloy to steel by new welding methods especially by laser welding. In this work dual-beam fiber laser keyhole welding was introduced to joining of 1.5 mm-thick aluminum alloys to 1.8 mm-thick 304 stainless steels in an overlap joint configure. The influences of different laser focusing positions on the weld appearance, interface microstructures and tensile mechanical resistance of the welded joints were studied. As a result, the good weld appearance of the aluminum alloy to stainless steel joints were obtained by dual-beam fiber laser keyhole welding process without any filler materials. The thickness of the intermetallic compound layer of the joint interface is comparatively thin when the laser beam with low energy is focusing on the front. The nano-hardness testing results show that the average hardness of intermetallic compound layer is 9.61 GPa, which is significantly higher than that of the parent stainless steel of 4.12 GPa and aluminum alloy of 1.09 GPa. The fracture of the welded joints occurs on the aluminum alloy/stainless steel interface layer. The highest mechanical resistance of 131 N/mm can be obtained by the low energy laser beam focused on the front.

Key words:  aluminum      alloy/stainless      steel      dissimilar      alloy,      dual-laser      beam,      laser      deep      penetration      welding,      intermetallic      compound      (IMC)     
Received:  09 March 2016     
Fund: Supported by National Natural Science Foundation of China (No.51475006) and Key Program of Research Foundation of Education Bureau of Beijing and Beijing Natural Science Foundation of B Category (No.KZ201610005004)

Cite this article: 

Feng PAN,Li CUI,Wei QIAN,Dingyong HE,Shizhong WEI. MICROSTRUCTURES AND MECHANICAL PROPERTIES OF DUAL-BEAM LASER KEYHOLE WELDED JOINTS OF ALUMINUM ALLOYS TO STAINLESS STEELS. Acta Metall Sin, 2016, 52(11): 1388-1394.

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2016.00077     OR     https://www.ams.org.cn/EN/Y2016/V52/I11/1388

Fig.1  Schematic of dual-beam laser keyhole welding of Al alloy to stainless steel
Fig.2  Top bead appearances of dual-laser beam welds (a) low power laser in front (b) low power laser in behind
Fig.3  OM images (a, b) and high magnified images near rectangular areas (c, d) of dual-beam laser welded joints of Al alloys to stainless steels with low power laser in front (a, c) and in behind (b, d) (HAZ—heat affected zone, IMC—intermetallic compound)
Fig.4  SEM images in the interface of Al alloys/stainless steels with low power laser in front (a) and in behind (b)
Fig.5  SEM image (a) and EDS line scanning analysis (b) of IMC at interface of the Al alloy/stainless steel
Fig.6  Nanoindentation load-displacement curve
Fig.7  OM images of fractured joint in the cross section direction

(a) whole joint (b) Al alloy side (c) stainless steel side

Fig.8  SEM images of fractured joint zone I (a) and zone II (b) in Fig.7
Fig.9  XRD spectrum taken from the fracture surfaces of the joints
[1] Liu B, Peng C Q, Wang R C, Wang X F, Li T T.Chin J Nonferrous Met, 2010; 20: 1705
[1] (刘兵, 彭超群, 王日初, 王小锋, 李婷婷. 中国有色金属学报, 2010; 20: 1705)
[2] Wang Z T, Zhang X H.Light Alloy Fabrication Technol, 2011; 39(2): 1
[2] (王祝堂, 张新华. 轻合金加工技术, 2011; 39(2): 1)
[3] Zhang W Z.Master Thesis, Dalian University of Technology, 2009
[3] (张维哲. 大连理工大学硕士学位论文, 2009)
[4] Ma K, Chen S H, Huang J H, Xia J, Zhang H, Zhao X K.Appl Laser, 2010; 30: 493
[4] (马柯, 陈树海, 黄继华, 夏军, 张华, 赵兴科. 应用激光, 2010; 30: 493)
[5] Lu J X, Yang W X, Wu S K, Zhao X D, Xiao R S.Acta Metall Sin (Engl Lett), 2014; 27: 670
[6] Zhou D W, Peng Y, Xu S H, Liu J S.Acta Metall Sin, 2013; 49: 959
[6] (周惦武, 彭艳, 徐少华, 刘金水. 金属学报, 2013; 49: 959)
[7] Zhou D W, Wu P, Peng L, Zhang Y, Chen G Y.Chin J Nonferrous Met, 2012; 22: 1738
[7] (周惦武, 吴平, 彭利, 张屹, 陈根余. 中国有色金属学报, 2012; 22: 1738)
[8] Ma J J, Masoud H, Carlson B, Kovacevic R.Mater Des, 2014; 58: 390
[9] Chen S H, Huang J H, Yang D D, Ma K, Zhang H.Trans China Weld, 2012; 33(8): 9
[9] (陈树海, 黄继华, 杨冬冬, 马柯, 张华. 焊接学报, 2012; 33(8): 9)
[10] Zhang S Z.Master Thesis, Lanzhou University of Technology, 2012
[10] (张诗正. 兰州理工大学硕士学位论文, 2012)
[11] Zhang D W.Master Thesis, Harbin Institute of Technology, 2010
[11] (张东卫. 哈尔滨工业大学硕士学位论文, 2010)
[12] Xiao R S, Dong P, Zhao X D.Chin J Lasers, 2011; 38(6): 28
[12] (肖荣诗, 董鹏, 赵旭东. 中国激光, 2011; 38(6): 28)
[13] Torkamany M J, Tahamtan S, Sabbaghzadeh J.Mater Des, 2010; 31: 458
[14] David A K, Team P.Mater Des, 2014; 54: 184
[15] Sierra G, Peyre P, Deschaux-Beaume F, Stuart D, Fras D.Mater Sci Eng, 2007; 447: 197
[16] Li L Q, Chen Y B, Tao W.Chin J Lasers, 2008; 35: 1783
[16] (李俐群, 陈彦宾, 陶汪. 中国激光, 2008; 35: 1783)
[17] Huang Y, Wang C M, Duan Z C, Hu L J, Hu X Y.Machinery, 2006; 44(5): 19
[17] (黄禹, 王春明, 段正澄, 胡伦骥, 胡席远. 机械制造, 2006; 44(5): 19)
[18] Yang J, Li X Y, Chen L, Gong S L, Li Q Y.Rare Met Mater Eng, 2011; 40: 871
[18] (杨璟, 李晓延, 陈俐, 巩水利, 李巧艳. 稀有金属材料与工程, 2011; 40: 871)
[19] Harooni M, Carlson B, Kovacevic R.Opt Laser Technol, 2014; 56: 247
[20] Harooni M, Ma J J, Carlson B, Kovacevic R.J Mater Process Technol, 2015; 216: 114
[21] Laukant H, Wallmann C, Korte M, Glatzel U. Adv Mater Res#/magtechI #, 2005; 6-8: 163
[22] Li L Q, Tan C W, Chen Y B, Guo W, Mei C X.J Mater Process Technol, 2013; 213: 361
[23] Tan C W, Mei C X, Li L Q, Dai J M, Guo W.Chin J Nonferrous Met, 2012; 22: 1577
[23] (檀财旺, 梅长兴, 李俐群, 戴景民, 郭伟. 中国有色金属学报, 2012; 22: 1577)
[24] Shi Y, Zhang H, Watanabe T, Tang J G.Opt Lasers Eng, 2010; 48: 732
[25] Qin G L, Lin S Y.Trans China Weld, 2006; 27(1): 81(秦国梁, 林尚扬. 焊接学报, 2006; 27(1): 81)
[1] GENG Yaoxiang, FAN Shimin, JIAN Jianglin, XU Shu, ZHANG Zhijie, JU Hongbo, YU Lihua, XU Junhua. Mechanical Properties of AlSiMg Alloy Specifically Designed for Selective Laser Melting[J]. 金属学报, 2020, 56(6): 821-830.
[2] HUANG Huogen, ZHANG Pengguo, ZHANG Pei, WANG Qinguo. Comparison of Glass Forming Ability Between U-Co and U-Fe Base Systems[J]. 金属学报, 2020, 56(6): 849-854.
[3] CHEN Wenxiong, HU Baojia, JIA Chunni, ZHENG Chengwu, LI Dianzhong. Post-Dynamic Softening of Austenite in a Ni-30%Fe Model Alloy After Hot Deformation[J]. 金属学报, 2020, 56(6): 874-884.
[4] LIU Jinlai, YE Lihua, ZHOU Yizhou, LI Jinguo, SUN Xiaofeng. Anisotropy of Elasticity of a Ni Base Single Crystal Superalloy[J]. 金属学报, 2020, 56(6): 855-862.
[5] HUANG Yuan, DU Jinlong, WANG Zumin. Progress in Research on the Alloying of Binary Immiscible Metals[J]. 金属学报, 2020, 56(6): 801-820.
[6] YANG Jie, WANG Lei. Effect and Optimal Design of the Material Constraint in the DMWJ of Nuclear Power Plants[J]. 金属学报, 2020, 56(6): 840-848.
[7] WEI Jie, WEI Yinghua, LI Jing, ZHAO Hongtao, LV Chenxi, DONG Junhua, KE Wei, HE Xiaoyan. Corrosion Behavior of Damaged Epoxy Coated Steel Bars Under the Coupling Effect of Chloride Ion and Carbonization[J]. 金属学报, 2020, 56(6): 885-897.
[8] CHEN Yongjun, BAI Yan, DONG Chuang, XIE Zhiwen, YAN Feng, WU Di. Passivation Behavior on the Surface of Stainless Steel Reinforced by Quasicrystal-Abrasive via Finite Element Simulation[J]. 金属学报, 2020, 56(6): 909-918.
[9] LI Shiju, LI Yang, CHEN Jianqiang, LI Zhonghao, XU Guangming, LI Yong, WANG Zhaodong, WANG Guodong. Segregation Behavior, Microstructure and Properties of 2099Al-Li Alloy Produced by Twin-Roll Casting Underthe Action of Electromagnetic Oscillation Field[J]. 金属学报, 2020, 56(6): 831-839.
[10] YU Jiaying, WANG Hua, ZHENG Weisen, HE Yanlin, WU Yurui, LI Lin. Effect of the Interface Microstructure of Hot-Dip Galvanizing High-Strength Automobile Steel on Its Tensile Fracture Behaviors[J]. 金属学报, 2020, 56(6): 863-873.
[11] YU Chenfan, ZHAO Congcong, ZHANG Zhefeng, LIU Wei. Tensile Properties of Selective Laser Melted 316L Stainless Steel[J]. 金属学报, 2020, 56(5): 683-692.
[12] CAO Tieshan, ZHAO Jinyi, CHENG Congqian, MENG Xianming, ZHAO Jie. Effect of Cold Deformation and Solid Solution Temperature on σ-phase Precipitation Behavior in HR3C Heat Resistant Steel[J]. 金属学报, 2020, 56(5): 673-682.
[13] ZHANG Yang, SHAO Jianbo, CHEN Tao, LIU Chuming, CHEN Zhiyong. Deformation Mechanism and Dynamic Recrystallization of Mg-5.6Gd-0.8Zn Alloy During Multi-Directional Forging[J]. 金属学报, 2020, 56(5): 723-735.
[14] WANG Xia, WANG Wei, YANG Guang, WANG Chao, REN Yuhang. Dimensional Effect on Thermo-Mechanical Evolution of Laser Depositing Thin-Walled Structure[J]. 金属学报, 2020, 56(5): 745-752.
[15] ZHAO Yanchun, MAO Xuejing, LI Wensheng, SUN Hao, LI Chunling, ZHAO Pengbiao, KOU Shengzhong, Liaw Peter K.. Microstructure and Corrosion Behavior of Fe-15Mn-5Si-14Cr-0.2C Amorphous Steel[J]. 金属学报, 2020, 56(5): 715-722.
No Suggested Reading articles found!