Please wait a minute...
Acta Metall Sin  2015, Vol. 51 Issue (5): 519-526    DOI: 10.11900/0412.1961.2014.00591
Current Issue | Archive | Adv Search |
EFFECTS OF B ON HIGH TEMPERATURE MECHA-NICAL PROPERTIES AND THERMAL FATIGUE BEHAVIOR OF COPPER DIE-CASTING DIE STEEL
Zhisheng WANG1,Xiang CHEN1,2(),Yanxiang LI1,2,Huawei ZHANG1,2,Yuan LIU1,2
1 School of Materials Science and Engineering, Tsinghua University, Beijing 100084
2 Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Tsinghua University, Beijing 100084
Cite this article: 

Zhisheng WANG, Xiang CHEN, Yanxiang LI, Huawei ZHANG, Yuan LIU. EFFECTS OF B ON HIGH TEMPERATURE MECHA-NICAL PROPERTIES AND THERMAL FATIGUE BEHAVIOR OF COPPER DIE-CASTING DIE STEEL. Acta Metall Sin, 2015, 51(5): 519-526.

Download:  HTML  PDF(8296KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Copper die-casting die steel is usually used in severe rugged environment. Liquid metal flows with high temperature and high pressure during injection and provides rapid filling of the die cavity. The copper die-casting steel should has excellent combination of the properties of high toughness, wear resistance, hardness, thermal fatigue resistance, oxidation resistance and corrosion resistance at high temperature for the cavity surface of die-casting die suffers high pressure, scour, erosion and thermal shock. A new kind of copper alloy die-casting die steel with pure austenitic matrix was conducted in this work, wherein the boride with high thermal stability and high hardness distributes in the austenitic matrix. The mechanical properties of copper alloy die-casting die steel at high temperature of 850 ℃ were studied using dynamic thermal-mechanical simulation testing machine. The thermal fatigue behavior of die steel at room temperature to 800 ℃ was performed using self-restraint Uddeholm thermal fatigue test method, and the depth extension status of surface thermal fatigue cracks and cross-sectional cracks in die steel thermal fatigue specimens was measured using stereo microscope and SEM. The effects of B content on the mechanical properties at room temperature and high temperature and on the thermal fatigue resistance were evaluated. The experimental results showed that boride distributes in austenitic matrix in the form of M2B-type boride (M represents Fe, Cr or Mn) after adding B in the tested steels, and the comprehensive performances of steel at high temperatures were effectively improved, the hardness of the steel at room temperature increased from 200 HV to 302 HV, the tensile yield strength at 850 ℃ increased from 144.3 MPa to 190.3 MPa, and the compressive yield strength increased from 139.7 MPa to 167.9 MPa. Evaluation of the degree of heat checking on 300 cyc of thermal fatigue testing at room temperature to 800 ℃ showed that the die steel containing B was rating 2~3, much better than rating 7~8 of electroslag remelting ESR-H13 steel for comparison, which mainly because the thermal fatigue cracks were blunted or deflected by boride, and then the cracks spread as scattering shapes was avoided.

Key words:  B      die-casting die steel      thermal fatigue property      copper alloy      die-casting     
Received:  30 October 2014     
Fund: National Natural Science Foundation of China (No.50974080)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2014.00591     OR     https://www.ams.org.cn/EN/Y2015/V51/I5/519

Steel C B Cr Mn Si Ni Mo Cu V P S Fe
3Cr10Mn7Ni6SiCu 0.27 - 9.76 6.48 0.57 6.22 - 0.43 - 0.012 0.013 Bal.
3Cr10Mn7Ni6SiCuB0.7 0.29 0.65 9.86 6.71 1.17 6.06 - 0.49 - 0.012 0.010 Bal.
ESR-H13 0.39 - 5.11 0.47 1.01 - 1.29 - 0.93 0.009 0.005 Bal.
Table 1  Chemical compositions of tested steels (mass fraction/%)
Fig.1  Results of simulation by JMatPro for 3Cr10Mn7Ni6SiCu steel
Fig.2  Schematic of thermal fatigue specimen (unit: mm)
Fig.3  SEM images of tested steels 3Cr10Mn7Ni6SiCu (a) and 3Cr10Mn7Ni6SiCuB0.7 (b), and EDS of point 1 (c) and point 2 (d) shown in Fig.3b
Fig.4  Binarized images (a, c, e) and surface cracking (b, d, f) of tested steels 3Cr10Mn7Ni6SiCu (a, b), 3Cr10Mn7Ni6SiCuB0.7 (c, d) and ESR-H13 (e, f) after thermal fatigue testing for 300 cyc from room temperature to 800 ℃
Steel Rm MPa Rp0.2 MPa A % Z % Rp0.2/ Rm Rmc MPa Rpc0.2 MPa Rpc0.2/ Rmc
3Cr10Mn7Ni6SiCu 181.0 144.3 40.9% 53.3% 0.80 257.1 139.7 0.54
3Cr10Mn7Ni6SiCuB0.7 196.7 190.3 39.2% 48.8% 0.97 287.4 167.9 0.58
ESR-H13 130.0 90.0 50.4% 77.3% 0.69 184.0 116.0 0.63
Table 2  Mechanical properties of tested steels at high temperature of 850 ℃
Fig.5  Cracks propagation on the cross-section of 3Cr10Mn7Ni6SiCu with vertical propagation after thermal fatigue testing for 300 cyc from room temperature to 800 ℃

(a, b) horizontal propagation (c) longitudinal propagation (d) scattering propagation

Fig.6  Cracks propagation on the cross-section of 3Cr10Mn7Ni6SiCuB0.7 with crack blunted (a, c, d) and crack deflected (b, c, d) by boride after thermal fatigue testing for 300 cyc from room temperature to 800 ℃
Fig.7  OM image of 3Cr10Mn7Ni6SiCuB0.7 after thermal fatigue testing for 300 cyc from room temperature to 800 ℃
Fig.8  XRD spectra of 3Cr10Mn7Ni6SiCuB0.7 before and after thermal fatigue testing for 300 cyc from room temperature to 800 ℃ (Inset show the high magnified curve)
[1] Cui K. Heat Treat Met, 2007; 32(1): 1 (崔 崑. 金属热处理, 2007; 32(1): 1)
[2] Klobcar D, Tusek J, Taliat B. Mater Sci Eng, 2008; A472: 198
[3] Wallace F J, Schwam D. Die Cast Eng, 2000; 44(3): 50
[4] Zhu Y L, Schwan D, Wallace J F, Birceanu S. Mater Sci Eng, 2004; A379: 420
[5] Mesquita R A, Kestenbach H J. Mater Sci Eng, 2011; A528: 4856
[6] Medvedeva A, Bergstrom J, Gunnarsson S, Andersson J. Mater Sci Eng, 2009; A523: 39
[7] Li G B, Li X Z, Wu J J. J Mater Process Technol, 1998; 74: 23
[8] Persson A, Hogmark S, Bergstr?m J. J Mater Process Technol, 2004; 152: 228
[9] Kang J W, You R, Nie G, Hao X K, Long H M, Wang T J, Huang T Y. J Mech Eng, 2012; 48(12): 63 (康进武, 游 锐, 聂 刚, 郝小坤, 龙海敏, 王天骄, 黄天佑. 机械工程学报, 2012; 48(12): 63)
[10] Persson A, Hogmark S, Bergstr M J. J Mater Process Technol, 2004; 148: 108
[11] Khader I, Renz A, Kailer A, Haas D. J Eur Ceram Soc, 2013; 33: 593
[12] Norstrom L. Scand J Metall, 1982; 11: 33
[13] Kariofillis G K, Kiourtsidis G E, Tsipas D N. Surf Coat Technol, 2006; 201: 19
[14] Chen Y W, Wu X C. J Iron Steel Res, 2010; 22(7): 42 (陈英伟, 吴晓春. 钢铁研究学报, 2010; 22(7): 42)
[15] Cui K. Mater Mech Eng, 2001; 25(1): 1 (崔 崑. 机械工程材料, 2001; 25(1): 1)
[16] Jiang Q C, Sui H L, Guan Q F. ISIJ Int, 2004; 44: 1103
[17] Sui H L. PhD Dissertation, Jilin University, Changchun, 2006 (隋鹤龙. 吉林大学博士学位论文, 长春, 2006)
[18] Chen X, Zheng S, Yuan J Y. Procedia Eng, 2012; 27: 1780
[19] Chen X, Li Y X, Zhang H M. J Mater Sci, 2011; 46: 957
[20] Chen X, Li Y X. Mater Sci Eng, 2010; A528: 770
[21] Liu Z L, Li Y X, Chen X, Hu K H. Acta Metall Sin, 2007; 43: 477 (刘仲礼, 李言祥, 陈 祥, 胡开华. 金属学报, 2007; 43: 477)
[22] Liu Z L, Li Y X, Chen X. China Foundry, 2012; 9: 313
[23] Chen X, Li Y X. Mater Sci Eng, 2007; A444: 298
[24] Li Y X, Liu Z L, Chen X. Int J Cast Met Res, 2008; 21: 67
[25] Liu Z L, Chen X, Li Y X. J Iron Steel Res Int, 2009; 16(3): 37
[26] Liu Z L, Li Y X, Chen X. Mater Sci Eng, 2008; A486: 112
[27] Liu Z L. PhD Dissertation, Tsinghua University, Beijing, 2007 (刘仲礼. 清华大学博士学位论文, 北京, 2007)
[28] Chen X, Li Y X. China Foundry, 2013; 10: 155
[29] Benxi 1st Steelworks enxi 1st Steelworks. Boron Steel. Beijing: Metallurgical Industry Press, 1977: 39 (本溪钢铁公司第一炼钢厂. 硼钢. 北京: 冶金工业出版社, 1977: 39)
[30] Guo C, Kelly P M. Mater Sci Eng, 2003; A352: 40
[31] Ma S Q, Xing J D, Liu G F, Yi D W, Fu H G, Zhang J J, Li Y F. Mater Sci Eng, 2010; A527: 6800
[32] Guo C Q. PhD Dissertation, The University of Queensland, Brisbane, 2002
[33] Chu Y Y, He X L, Tang L, Xu T D, Ke J. Acta Metall Sin, 1987; 23: 169 (褚幼义, 贺信莱, 唐 立, 徐庭栋, 柯 俊. 金属学报, 1987; 23: 169)
[34] He X L, Chu Y Y, Ke J. Acta Metall Sin, 1983; 19: 459 (贺信莱, 褚幼义, 柯 俊. 金属学报, 1983; 19: 459)
[35] Jahazi M, Jonas J J. Mater Sci Eng, 2002; A335: 49
[36] He X L, Chu Y Y, Tang L, Zhou Z X, Ke J. Acta Metall Sin, 1987; 23: 291 (贺信莱, 褚幼义, 唐 立, 周振新, 柯 俊. 金属学报, 1987; 23: 291)
[37] Persson A, Hogmark S, Bergstr?m J. Int J Fatigue, 2004; 26: 1095
[1] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] CHEN Jia, GUO Min, YANG Min, LIU Lin, ZHANG Jun. Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1209-1220.
[3] LI Jiarong, DONG Jianmin, HAN Mei, LIU Shizhong. Effects of Sand Blasting on Surface Integrity and High Cycle Fatigue Properties of DD6 Single Crystal Superalloy[J]. 金属学报, 2023, 59(9): 1201-1208.
[4] FENG Qiang, LU Song, LI Wendao, ZHANG Xiaorui, LI Longfei, ZOU Min, ZHUANG Xiaoli. Recent Progress in Alloy Design and Creep Mechanism of γ'-Strengthened Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1125-1143.
[5] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[6] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[7] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[8] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[9] JIANG He, NAI Qiliang, XU Chao, ZHAO Xiao, YAO Zhihao, DONG Jianxin. Sensitive Temperature and Reason of Rapid Fatigue Crack Propagation in Nickel-Based Superalloy[J]. 金属学报, 2023, 59(9): 1190-1200.
[10] MU Yahang, ZHANG Xue, CHEN Ziming, SUN Xiaofeng, LIANG Jingjing, LI Jinguo, ZHOU Yizhou. Modeling of Crack Susceptibility of Ni-Based Superalloy for Additive Manufacturing via Thermodynamic Calculation and Machine Learning[J]. 金属学报, 2023, 59(8): 1075-1086.
[11] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[12] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[13] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
[14] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[15] XU Yongsheng, ZHANG Weigang, XU Lingchao, DAN Wenjiao. Simulation of Deformation Coordination and Hardening Behavior in Ferrite-Ferrite Grain Boundary[J]. 金属学报, 2023, 59(8): 1042-1050.
No Suggested Reading articles found!