Please wait a minute...
Acta Metall Sin  2015, Vol. 51 Issue (5): 527-536    DOI: 10.11900/0412.1961.2014.00462
Current Issue | Archive | Adv Search |
EFFECT OF Mn PRE-PARTITIONING ON C PARTITIONING AND RETAINED AUSTENITE OF Q&P STEELS
Liansheng CHEN1(),Jianyang ZHANG1,Yaqiang TIAN1,Jinying SONG1,Yong XU1,2,Shihong ZHANG2
1 Hebei Key Laboratory of Modern Metallurgy Technology, Hebei United University, Tangshan 063009
2 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article: 

Liansheng CHEN, Jianyang ZHANG, Yaqiang TIAN, Jinying SONG, Yong XU, Shihong ZHANG. EFFECT OF Mn PRE-PARTITIONING ON C PARTITIONING AND RETAINED AUSTENITE OF Q&P STEELS. Acta Metall Sin, 2015, 51(5): 527-536.

Download:  HTML  PDF(12060KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The chemical compositions of C and Mn have a strong influence on the stability of the metastable retained austenite at room temperature. In the intercritical annealing process, Mn element improves the stability of the austenite by partitioning from ferrite to austenite and the enrichment of Mn in austenite can also impact on the diffusion of C element from martensite to retained austenite in partitioning process. Based on C partitioning, Mn partitioning can further improve the product of strength and elongation, and has no negative effect on weldability of the low carbon high strength steel. Thus, it can effectively solve the contradiction between mechanical property and weldability of low carbon high strength steel in traditional quenching-partitioning (Q&P) process. In this case, it is of great significance to study the Mn pre-partitioning mechanism and its influence on C partitioning and retained austenite of the low carbon high strength steel. Therefore, one low alloy C-Si-Mn steel was studied in the present work. The Mn pre-partitioning behavior and its effect on C partitioning and the stability of the retained austenite were investigated by means of intercritical heating-quenching (IQ) process, Q&P and intercritical heatingaustenitizing-quenching-partitioning (I&Q&P) process. The results showed that during the process of phase transformation in the intercritical reheating, C and Mn elements constantly diffused from ferrite to austenite. When this process ended, C and Mn elements enriched in austenite. While Mn element in microstructure at room temperature was still enrichment and C element enriched regularly between the martensite laths in the I&Q&P treated steel. With the increase of C partitioning time in both Q&P and I&Q&P process, the tensile strength of steel was decreased constantly, while the elongation showed an increasing fristly and then decreasing trend. The product of strength and elongation of the steel treated by I&Q&P process reached 23478 MPa·% with the C partitioning time of 90 s. The more austenite in martensite phase would be obtained after the first quenching with the Mn pre-partitioning. It was important to prompt more C diffusing into austenite during C partitioning process to stabilize more retained austenite at room temperature of the steel after the second quenching. With the same experimental conditions, the retained austenite of the combined effects of C and Mn partitioning during I&Q&P process would be increased 2.4% than the effect of C partitioning during Q&P process.

Key words:  Mn partitioning      C partitioning      retained austenite      product of strength and elongation     
Received:  18 August 2014     
Fund: National Natural Science Foundation of China (Nos.51254004 and 51304186), Natural Science Foundation of Hebei Province (No.E2014209191) and Science Foundation of Department of Education of Hebei Province (No.YQ2013003)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2014.00462     OR     https://www.ams.org.cn/EN/Y2015/V51/I5/527

Fig.1  Schematics of different heat treatments applied to experimental steels (Ac3—temperature of all ferrite transformed to austenite, Ac1—start temperature of pearlite transformed to austenite, Ms—initial temperature of martensite transformation, Mf—final temperature of martensite transformation)

(a) intercritical heating-quenching (IQ) (b) quenching-partitioning (Q&P) (c) intercritical heating-austenitizing-quenching-partitioning (I&Q&P)

Fig.2  Microstructure of hot-rolled experimental steel (F—ferrite, P—pearlite)
Fig.3  Microstructure (a) and EPMA analysis of C (b) and Mn (c) in experimental steel after IQ process (M—martensite)
Fig.4  Content changes of C and Mn along the scanning line in Fig.3a in experimental steel after IQ process
Fig.5  Microstructure (a) and EPMA analysis of C (b) and Mn (c) in experimental steel treated by I&Q&P process with C partitioning time of 90 s (RA—retained austenite, A—Mn-rich area, B—Mn-poor area)
Fig.6  SEM images of experimental steel after Q&P process with C partitioning times of 30 s (a), 90 s (b) and 180 s (c)
Fig.7  SEM images of experimental steel after I&Q&P process with C partitioning times of 30 s (a), 90 s (b) and 180 s (c)
Fig.8  TEM images and SAED patterns of experimental steels after Q&P (a) and I&Q&P (b) processes with C partitioning time of 90 s
Fig.9  XRD spectra of experimental steels after Q&P and I&Q&P processes with different C partitioning times
Process t / s mRA / % Rm / MPa A / % Rm·A / MPa·%
Q&P 30 8.4 1360 14.6 19856
90 11.2 1326 16.7 22144
180 9.0 1305 15.2 19836
I&Q&P 30 11.0 1332 16.3 21712
90 13.6 1319 17.8 23478
180 10.4 1298 16.0 20768
Table 1  Mechanical properties and volume fraction of retained austenite in experimental steel treated by Q&P and I&Q&P processes
Fig.10  Mass fraction of carbon in retained austenite in experimental steels after Q&P and I&Q&P processes with different partitioning times
Fig.11  Relationship between volume fraction of retained austenite and mass fraction of Mn in austenite (L0—theoretical volume fraction of RA after Q&P, P1—volume fraction of RA after Q&P, P2—volume fraction of RA after I&Q&P)
[1] Speer J G, Assun??o F C R, Matlock D K, Edmonds D V. Mater Res, 2005; 8: 417
[2] Edmonds D, He K, Rizzo F, De Cooman B, Matlock D, Speer J. Mater Sci Eng, 2006; A438: 25
[3] Clarke A J, Speer J G, Matlock D K, Rizzo F, Edmonds D V, Santofimia M J. Scr Mater, 2009; 61: 149
[4] Li Y, Lu Y P, Wang C, Li S T, Chen L B. J Iron Steel Res Int, 2011; 18(2): 70
[5] Jiang H T, Zhuang B T, Duan X G, Wu Y X, Cai Z X. Int J Miner Metall Mater, 2013; 20: 105
[6] Paravicini B E, Santofimia M, Zhao L, Sietsma J, Anelli E. Mater Sci Eng, 2013; A559: 486
[7] Wu R, Wang L, Jin X. Phys Procedia, 2013; 50: 8
[8] Zhong N. PhD Dissertation, Shanghai Jiao Tong University, 2009 (钟 宁. 上海交通大学博士学位论文, 2009)
[9] Wang Y. PhD Dissertation, Shanghai Jiao Tong University, 2013 (王 颖. 上海交通大学博士学位论文, 2013)
[10] Oi S W, Hill P, Rawson M, Bhadeshia H. Mater Sci Eng, 2013; A564: 485
[11] Wu Q, Shanthraj P, Zikry M A. Int J Fracture, 2013; 184: 241
[12] Paravicini B E, Santofimia M, Zhao L, Sietsma J, Anelli E. Mater Sci Eng, 2013; A559: 486
[13] Li D Z, Wei Y H, Liu C Y, Hou L F, Liu D F, Ya T X, Hu Y T. J Iron Steel Res, 2009; 21(2): 1 (李大赵, 卫英慧, 刘春月, 侯利锋, 刘东风, 崖天燮, 胡玉亭. 钢铁研究学报, 2009; 21(2): 1)
[14] Zhang M. PhD Dissertation, Shanghai University, 2007 (张 梅. 上海大学博士学位论文, 2007)
[15] Yu S F, Qian B N, Guo X M. Acta Metall Sin, 2005; 41: 402 (于少飞, 钱百年, 国旭明. 金属学报, 2005; 41: 402)
[16] Lee S, Lee S J, De Cooman B C. Scr Mater, 2011; 65: 225
[17] Toji Y, Yamashita T, Nakajima K, Okuda K, Matsuda H, Hasegawa K, Seto K. ISIJ Int, 2011; 51: 818
[18] De Moor E, Matlock D K, Speer J G, Merwin M J. Scr Mater, 2011; 64: 185
[19] Garcia C I, De Ardo A J. Metall Trans, 1981; 12A: 521
[20] Speich G R, Demarest V A, Miller R L. Metall Trans, 1981; 12(8): 1419
[21] Lee S J, Lee S, De Cooman B C. Scr Mater, 2011; 64: 649
[22] Tian Y Q, Zhang H J, Chen L S, Song J Y, Xu Y, Zhang S H. Acta Metall Sin, 2014; 50: 531 (田亚强, 张宏军, 陈连生, 宋进英, 徐 勇, 张士宏. 金属学报, 2014, 50: 531)
[23] Chen L S, Zhao Y, Tian Y Q, Song J Y, Wei Y L, Yang D. J Mater Eng, 2014; (6): 5 (陈连生, 赵 远, 田亚强, 宋进英, 魏英立, 杨 栋. 材料工程, 2014; (6): 5)
[24] Chen L S, Zhang J Y, Tian Y Q, Song J Y, Wei Y L, Zhao Y. J Iron Steel Res, 2014; 26(5): 72 (陈连生, 张健杨, 田亚强, 宋进英, 魏英立, 赵 远. 钢铁研究学报, 2014; 26(5): 72)
[25] Maruyama H. J Jpn Soc Heat Treat, 1977; 17: 198
[26] Nishiyama Z. Martensitic Transformations. New York: Academic Press, 1978: 60
[27] Li N, Liu G Q, Kang R M, Yang Y, Yu H. Trans Mater Heat Treat, 2013; 34(3): 118 (李 娜, 刘国权, 康人木, 杨 云, 余 慧. 材料热处理学报, 2013; 34(3): 118)
[28] Yang H F, Wang L, Feng W J, Lu F G. Hot Work Technol, 2011; 40(18): 148 (杨海峰, 王 利, 冯伟骏, 芦凤桂. 热加工工艺, 2011; 40(18): 148)
[29] Long C X. PhD Dissertation, Hunan University, Changsha, 2012 (龙彩霞. 湖南大学博士学位论文, 长沙, 2012)
[30] Wang M J, Ma Q, Li J L, Zhang Y, Wang Y, Chen L. J Yanshan Univ, 2013; 37: 385 (王明家, 马 千, 李景丽, 张 勇, 王 艳, 陈 雷. 燕山大学学报, 2013; 37: 385)
[31] Xu Z Y. Trans Mater Heat Treat, 2009; (6): 1 (徐祖耀. 金属热处理, 2009; (6): 1)
[32] Mahieu J, Maki J, De Cooman B C, Claessens S. Metall Mater Trans, 2002; 33A: 2573
[33] H?mberg D. J Appl Math, 1995; 54(1): 31
[1] CHENG Yuanyao, ZHAO Gang, XU Deming, MAO Xinping, LI Guangqiang. Effect of Austenitizing Temperature on Microstructures and Mechanical Properties of Si-Mn Hot-Rolled Plate After Quenching and Partitioning Treatment[J]. 金属学报, 2023, 59(3): 413-423.
[2] SUN Yi, ZHENG Qinyuan, HU Baojia, WANG Ping, ZHENG Chengwu, LI Dianzhong. Mechanism of Dynamic Strain-Induced Ferrite Transformation in a 3Mn-0.2C Medium Mn Steel[J]. 金属学报, 2022, 58(5): 649-659.
[3] JIANG Zhonghua, DU Junyi, WANG Pei, ZHENG Jianneng, LI Dianzhong, LI Yiyi. Mechanism of Improving the Impact Toughness of SA508-3 Steel Used for Nuclear Power by Pre-Transformation of M-A Islands[J]. 金属学报, 2021, 57(7): 891-902.
[4] LIU Man, HU Haijiang, TIAN Junyu, XU Guang. Effect of Ausforming on the Microstructures and Mechanical Properties of an Ultra-High Strength Bainitic Steel[J]. 金属学报, 2021, 57(6): 749-756.
[5] LUO Haiwen,SHEN Guohui. Progress and Perspective of Ultra-High Strength Steels Having High Toughness[J]. 金属学报, 2020, 56(4): 494-512.
[6] Yaqiang TIAN,Geng TIAN,Xiaoping ZHENG,Liansheng CHEN,Yong XU,Shihong ZHANG. C and Mn Elements Characterization and Stability of Retained Austenite in Different Locations ofQuenching and Partitioning Bainite Steels[J]. 金属学报, 2019, 55(3): 332-340.
[7] Chengwei SHAO, Weijun HUI, Yongjian ZHANG, Xiaoli ZHAO, Yuqing WENG. Microstructure and Mechanical Properties of a Novel Cold Rolled Medium-Mn Steel with Superior Strength and Ductility[J]. 金属学报, 2019, 55(2): 191-201.
[8] WAN Xiangliang, HU Feng, CHENG Lin, HUANG Gang, ZHANG Guohong, WU Kaiming. Influence of Two-Step Bainite Transformation on Toughness in Medium-Carbon Micro/Nano-Structured Steel[J]. 金属学报, 2019, 55(12): 1503-1511.
[9] Dong PAN, Yuguang ZHAO, Xiaofeng XU, Yitong WANG, Wenqiang JIANG, Hong JU. Effect of High-Energy and Instantaneous Electropulsing Treatment on Microstructure and Propertiesof 42CrMo Steel[J]. 金属学报, 2018, 54(9): 1245-1252.
[10] Jilan YANG, Yuankai JIANG, Jianfeng GU, Zhenghong GUO, Haiyan CHEN. Effect of Austenitization Temperature on the Dry Sliding Wear Properties of a Medium Carbon Quenching and Partitioning Steel[J]. 金属学报, 2018, 54(1): 21-30.
[11] Long HUANG,Xiangtao DENG,Jia LIU,Zhaodong WANG. Relationship Between Retained Austenite Stability and Cryogenic Impact Toughness in 0.12C-3.0Mn Low Carbon Medium Manganese Steel[J]. 金属学报, 2017, 53(3): 316-324.
[12] Xiaolu GUI,Baoxiang ZHANG,Guhui GAO,Ping ZHAO,Bingzhe BAI,Yuqing WENG. FATIGUE BEHAVIOR OF BAINITE/MARTENSITE MULTIPHASE HIGH STRENGTH STEEL TREATEDBY QUENCHING-PARTITIONING-TEMPERING PROCESS[J]. 金属学报, 2016, 52(9): 1036-1044.
[13] Zhenjia XIE,Chengjia SHANG,Wenhao ZHOU,Binbin WU. EFFECT OF RETAINED AUSTENITE ON DUCTILITY AND TOUGHNESS OF A LOW ALLOYED MULTI-PHASE STEEL[J]. 金属学报, 2016, 52(2): 224-232.
[14] Xiaolin LI, Zhaodong WANG. EFFECT OF ONE STEP Q&P PROCESS ON MICRO- STURCTURE AND MECHANICAL PROPERTIES OF A DUAL MARTENSITE STEEL[J]. 金属学报, 2015, 51(5): 537-544.
[15] ZHOU Wenhao, XIE Zhenjia, GUO Hui, SHANG Chengjia. REGULATION OF MULTI-PHASE MICROSTRUCTURE AND MECHANICAL PROPERTIES IN A 700 MPa GRADE LOW CARBON LOW ALLOY STEEL WITH GOOD DUCTILITY[J]. 金属学报, 2015, 51(4): 407-416.
No Suggested Reading articles found!