RECALESCENCE EFFECT SIMULATION AND MICROSTRUCTURE EVOLUTION OF UNDERCOOLED Fe82 B17 Si1 ALLOY
CHEN Zheng1, 2 ( ), YANG Yanan1 , CHEN Qiang1 , XU Junfeng2 , TANG Yueyue1 , LIU Feng2
1 School of Materials Science and Engineering, China University of Mining and Technology, Xuzhou 221116 2 State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi′an 710072
Cite this article:
CHEN Zheng, YANG Yanan, CHEN Qiang, XU Junfeng, TANG Yueyue, LIU Feng. RECALESCENCE EFFECT SIMULATION AND MICROSTRUCTURE EVOLUTION OF UNDERCOOLED Fe82 B17 Si1 ALLOY. Acta Metall Sin, 2014, 50(7): 795-801.
Abstract 通过熔融玻璃净化与循环过热相结合的方法获得过冷度ΔT=6~280 K范围内的Fe82 B17 Si1 共晶合金的凝固组织演变; 结合突变方程和JMAK模型拟合凝固过程的冷却曲线, 拟合结果符合Fe82 B17 Si1 共晶合金的组织类型及形态随过冷度的变化规律. 结果表明, 当6 K≤ΔT<75 K时, Fe82 B17 Si1 合金中形成了复杂规则共晶及准规则共晶组成的混合共晶组织; 当75 K≤ΔT<180 K时, 凝固组织由混合共晶组织和深过冷非规则共晶组织组成; 当180 K≤ΔT<250 K时, 凝固组织由不同含量的初生a -Fe相和枝晶间深过冷非规则共晶组织组成; 当ΔT >250 K时, 凝固组织为完全非规则共晶组织.
Key words:
Fe82 B17 Si1 alloy
JMAK model
undercooling
eutectic structure
Received: 13 December 2013
Fund: Supported by National Natural Science Foundation of China (No.51101169), Fundamental Research Funds for the Central Universities (No.2014QNA07) and China Postdoctoral Science Foundation (No.2013M540475)
[1]
Yang C L, Yang G C, Lu Y P, Chen J Q, Zhou Y H. Acta Metall Sin, 2005; 41: 1053
(杨长林, 杨根仓, 卢一平, 陈甲琪, 周尧和. 金属学报, 2005; 41: 1053)
[2]
Goetzinger R, Barth M, Herlach D M. J Appl Phys, 1998; 84: 1643
[3]
Leonhardt M, Loser W, Lindenkreuz H G. Mater Sci Eng, 1999; A271: 31
[4]
Lu Y P, Yang G C, Xi Z Z, Wang H P, Zhou Y H. Mater Lett, 2005; 59: 1558
[5]
Lu Y P, Yang G C, Liu F, Wang H P, Zhou Y H. Mater Lett, 2007; 61: 987
[6]
Merz G D, Kattamis T Z. Metall Trans, 1977; 8A: 295
[7]
Croker M N, Fidler R S, Smith R W. Proc Roy Soc Lond, 1973; 335A: 15
[8]
Lu Y P, Yang G C, Liu F, Wang H P, Zhou Y H. Eur Phys Lett, 2006; 74: 281
[9]
Lu Y P, Liu F, Yang G C, Yang C L, Zhou Y H. Appl Phys Lett, 2006; 89: 241902
[10]
Wei B, Yang G C, Zhou Y H. Acta Metall, 1991; 39: 1249
[11]
Chu M G, Shionara Y, Flemings M C. Metall Trans, 1984; 15A: 1303
[12]
Murty Y, Kattamis T Z. J Cryst Growth, 1974; 22: 219
[13]
Wang H P, Yao W J, Wei B. Appl Phys Lett, 2006; 89: 201905
[14]
Bottinger W J, Aziz M J. Acta Metall, 1989; 37: 3379
[15]
Battezzati L, Antonione C, Baricco M. J Alloys Compd, 1997; 247: 164
[16]
Loser W, Hermann R, Leonhardt R. Mater Sci Eng, 1997; A224: 53
[17]
Lu Y P, Yang G C, Yang C L,Wang H P, Zhou Y H. Progress Nat Sci, 2006; 16: 287
[18]
Duhaj P, Švec P. Mater Sci Eng, 1997; A226-228: 245
[19]
Schroers J, Holland-Moritz D, Herlach D M. Mater Sci Eng A, 1997; 226-228: 990
[20]
Luborsky F E. Amorphous Metallic Alloys. London: Butterworth & Co., 1983: 381
[21]
Zhang Z Z. PhD Dissertation, Northwestern Polytechnical University, Xi′an, 1993
(张振忠. 西北工业大学博士学位论文, 西安, 1993)
[22]
Saleh A M, Clemente R A. J Appl Phys, 2004; 43: 3624
[23]
Emadi D, Whiting L, Djurdjevic M, Kierkus W T, Sokolowski J. MJoM, 2004; 10: 91
[24]
Gandin Ch-A, Mosbah S, Volkmann Th, Herlach D M. Acta Mater, 2008; 56: 3023
[25]
Yang W, Liu F, Liu H, Wang H F, Yang G C, Zhou Y H. J Cryst Growth, 2009; 311: 3225
[26]
Liu F, Sommer F, Mittemeijer E J. J Mater Sci, 2004; 39: 1621
[27]
Xu J F, Liu F, Zhang K, Gong M M. Mater Sci Technol, 2012; 28: 274
[28]
Christian J W. The Theory of Transformation in Metals and Alloys. OXford: Pergamon Press, 2002: 623
[29]
Xu J F, Liu F, Zhang K, Gong M M. Mater Sci Technol, 2012; 28: 274
[30]
Valiev R Z, Korasilnikov N A, Tzenev N K. Mater Sci Eng, 1991; A137: 35
[31]
Zhang Z Z, Song G S, Yang G C. Progress Nat Sci, 2000; 10: 560
(张振忠, 宋广生, 杨根仓. 自然科学进展, 2000; 10: 560)
[32]
Fras E, Lopez H F. Metall Mater Trans, 1999; 30B: 927
[33]
Saleh A M, Clemente R A. J Appl Phys, 2004; 43: 3624
[34]
Raghavan V. Phase Diagrams of Ternary Iron Alloys Part 6A. New Delhi: Electronic Publishing Center, Green Park Extension. 1993: 11, 406
[35]
Boettinger W J, Coriell S R, Trivedi R. Principles Technol, 1988; (IV): 13
No Suggested Reading articles found!
Viewed
Full text
Abstract
Cited
Shared
Discussed