EFFECT OF SO2 ON CORROSION EVOLUTION OF Q235B STEEL IN SIMULATED COASTAL- INDUSTRIAL ATMOSPHERE
CHEN Wenjuan, HAO Long, DONG Junhua( ), KE Wei, WEN Huailiang
State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article:
CHEN Wenjuan, HAO Long, DONG Junhua, KE Wei, WEN Huailiang. EFFECT OF SO2 ON CORROSION EVOLUTION OF Q235B STEEL IN SIMULATED COASTAL- INDUSTRIAL ATMOSPHERE. Acta Metall Sin, 2014, 50(7): 802-810.
Abstract 采用循环干/湿模拟腐蚀增重实验、动电位极化曲线、电化学阻抗谱和XRD方法, 研究了模拟海岸-工业大气中SO2 对Q235B钢腐蚀行为的影响. 结果表明, 在腐蚀初期SO2 抑制了Q235B钢的腐蚀; 在腐蚀后期, SO2 促进了Q235B钢的腐蚀. 当SO2 的浓度较低时, 腐蚀速率随SO2 浓度的升高而增大; 当SO2 的浓度较高时, 腐蚀速率随SO2 浓度的升高而减小. 工业-海岸大气中的SO2 组分可以抑制腐蚀产物中g -FeOOH和b -FeOOH的生成, 而促进a -FeOOH生成. 低碳钢腐蚀速率随SO2 浓度变化出现的极值现象与SO2 导致的锈层相组分变化密切相关.
Key words:
Q235B steel
dry/wet cyclic
coastal-industrial atmospheric corrosion
rust
Received: 15 November 2013
Fund: Supported by National Natural Science Foundation of China (Nos.51201170 and 51131007)
[1]
Leygraf C, Graedel T. Atmospheric Corrosion. New York: John Wiley & Sons, 2000: 10
[2]
Singh D D N, Yadav S, Saha J K. Corros Sci, 2008; 50: 93
[3]
Castaño J G, Botero C A, Restrepo A H, Agudelo E A, Correa E, Echeverría F. Corros Sci, 2010; 52: 216
[4]
Hou W, Liang C. Corrosion, 1999; 55: 65
[5]
Zhang Q C, Wu J S, Wang J J, Zheng W L, Li A B. Mater Chem Phys, 2002; 77: 603
[6]
Mendoza A R, Corvo F. Corros Sci, 1999; 41: 75
[7]
Dawson J L, Ferreira M G S. Corros Sci, 1986; 26: 1009
[8]
Weissenrieder J, Leygraf C. J Electrochem Soc, 2004; 151: B165
[9]
Hao L, Zhang S X, Dong J H, Ke W. Corros Sci, 2012; 58: 175
[10]
Dong J H. Corros Sci Prot Technol, 2010; 22: 261
(董俊华. 腐蚀科学与防护技术, 2010; 22: 261)
[11]
Hao L, Zhang S X, Dong J H, Ke W. Metall Mater Trans, 2012; 43: 1724
[12]
Wang J H, Wei F I, Chang Y S, Shih H C. Mater Chem Phys, 1997; 47: 1
[13]
Misawa T, Hashimoto K, Shimodaira S. Corros Sci, 1974; 14: 131
[14]
Evans U R, Taylor C A J. Corros Sci, 1972; 12: 227
[15]
Saha J K. Corrosion of Constructional Steels in Marine and Industrial Environment. Heidelberg: Springer, 2013: 13
[16]
Fuente D D L, Díaz I, Simancas J, Chico B, Morcillo M. Corros Sci, 2011; 53: 604
[17]
Chen Y Y, Tzeng H J, Wei L I, Shih H C. Mater Sci Eng, 2005; A398: 47
[18]
Ishikawa T, Katoh R, Yasukawa A, Kandori K, Nakayama T, Yuse F. Corros Sci, 2001; 43: 1727
[19]
Asami K, Kikuchi M. Corros Sci, 2003; 45: 2671
[20]
Shiotani K, Tanimoto W, Maeda C, Kawabata F, Amano K. Corros Eng, 2000; 49: 67
[21]
Allam I M, Arlow J S, Saricimen H. Corros Sci, 1991; 32: 417
[22]
Dong J H, Han E H, Ke W. Sci Technol Adv Mater, 2007; 8: 559
[23]
Melchers R E. Corros Sci, 2008; 50: 3446
[24]
Stramann M, Bohnenkamp K, Engell H J. Corros Sci, 1983; 23: 969
[25]
Vaynman S, Guico R S, Fine M E, Manganello S J. Metall Mater Trans, 1997; 28A: 1274
[26]
Mansfeld F. Corrosion, 1988; 44: 856
[27]
Mansfeld F, Lin S, Chen Y C. J Electrochem Soc, 1988; 135: 906
[28]
Stern M, Geary A L. J Electrochem Soc, 1957; 104: 56
[29]
Revie R W, Uhlig H H. Corrosion and Corrosion Control. 4th Ed., New York: John Wiley & Sons, 2008: 115
[30]
Stratmann M, Streckel H, Kim K T, Crockett S. Corros Sci, 1990; 30: 715
[31]
Zhang S H, Lyon S B. Corros Sci, 1993; 35: 713
[32]
Frankel G S, Stratmann M, Rohwerder M, Michalik A, Maier B, Dora J, Wicinski M. Corros Sci, 2007; 49: 2021
No Suggested Reading articles found!
Viewed
Full text
Abstract
Cited
Shared
Discussed