Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (7): 795-801    DOI: 10.3724/SP.J.1037.2013.00813
Current Issue | Archive | Adv Search |
RECALESCENCE EFFECT SIMULATION AND MICROSTRUCTURE EVOLUTION OF UNDERCOOLED Fe82B17Si1 ALLOY
CHEN Zheng1,2(), YANG Yanan1, CHEN Qiang1, XU Junfeng2, TANG Yueyue1, LIU Feng2
1 School of Materials Science and Engineering, China University of Mining and Technology, Xuzhou 221116
2 State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi′an 710072
Cite this article: 

CHEN Zheng, YANG Yanan, CHEN Qiang, XU Junfeng, TANG Yueyue, LIU Feng. RECALESCENCE EFFECT SIMULATION AND MICROSTRUCTURE EVOLUTION OF UNDERCOOLED Fe82B17Si1 ALLOY. Acta Metall Sin, 2014, 50(7): 795-801.

Download:  HTML  PDF(4897KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

通过熔融玻璃净化与循环过热相结合的方法获得过冷度ΔT=6~280 K范围内的Fe82B17Si1共晶合金的凝固组织演变; 结合突变方程和JMAK模型拟合凝固过程的冷却曲线, 拟合结果符合Fe82B17Si1共晶合金的组织类型及形态随过冷度的变化规律. 结果表明, 当6 K≤ΔT<75 K时, Fe82B17Si1合金中形成了复杂规则共晶及准规则共晶组成的混合共晶组织; 当75 K≤ΔT<180 K时, 凝固组织由混合共晶组织和深过冷非规则共晶组织组成; 当180 K≤ΔT<250 K时, 凝固组织由不同含量的初生a-Fe相和枝晶间深过冷非规则共晶组织组成; 当ΔT >250 K时, 凝固组织为完全非规则共晶组织.

Key words:  Fe82B17Si1 alloy      JMAK model      undercooling      eutectic structure     
Received:  13 December 2013     
ZTFLH:  TG115.21  
  TG146  
Fund: Supported by National Natural Science Foundation of China (No.51101169), Fundamental Research Funds for the Central Universities (No.2014QNA07) and China Postdoctoral Science Foundation (No.2013M540475)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00813     OR     https://www.ams.org.cn/EN/Y2014/V50/I7/795

Fig.1  

Fe82B17Si1合金在不同过冷度下的SEM像

Fig.2  

不同过冷度下Fe82B17Si1共晶合金凝固过程中的冷却曲线

Fig.3  

不同过冷度下Fe82B17Si1合金试样冷却的拟合曲线与实验曲线

Experiment value Fitted value
?T / K Θ / K tpn / s AL BL TGL / K AS BS TGS / K k tn0 / s
22 312 22 1209 0.1330 1316 1567 0.019 591 1.4×10-4 16
209 312 114 14050 0.0359 975 10873 0.0243 753 3.7×10-4 100
280 312 36 580 0.0315 920 1700 0.0305 794 9.4×10-3 30
表1  一次再辉冷却曲线实验及拟合结果
Fig.4  

ΔT=145 K时Fe82B17Si1合金冷却的实验和拟合曲线

Fig.5  

Fe82B17Si1 合金的拟合BS和BL值随过冷度的变化

Fig.6  

过冷度∆T≥209 K的范围内Fe82B17Si1合金非规则共晶中Fe2B相的OM像

[1] Yang C L, Yang G C, Lu Y P, Chen J Q, Zhou Y H. Acta Metall Sin, 2005; 41: 1053
(杨长林, 杨根仓, 卢一平, 陈甲琪, 周尧和. 金属学报, 2005; 41: 1053)
[2] Goetzinger R, Barth M, Herlach D M. J Appl Phys, 1998; 84: 1643
[3] Leonhardt M, Loser W, Lindenkreuz H G. Mater Sci Eng, 1999; A271: 31
[4] Lu Y P, Yang G C, Xi Z Z, Wang H P, Zhou Y H. Mater Lett, 2005; 59: 1558
[5] Lu Y P, Yang G C, Liu F, Wang H P, Zhou Y H. Mater Lett, 2007; 61: 987
[6] Merz G D, Kattamis T Z. Metall Trans, 1977; 8A: 295
[7] Croker M N, Fidler R S, Smith R W. Proc Roy Soc Lond, 1973; 335A: 15
[8] Lu Y P, Yang G C, Liu F, Wang H P, Zhou Y H. Eur Phys Lett, 2006; 74: 281
[9] Lu Y P, Liu F, Yang G C, Yang C L, Zhou Y H. Appl Phys Lett, 2006; 89: 241902
[10] Wei B, Yang G C, Zhou Y H. Acta Metall, 1991; 39: 1249
[11] Chu M G, Shionara Y, Flemings M C. Metall Trans, 1984; 15A: 1303
[12] Murty Y, Kattamis T Z. J Cryst Growth, 1974; 22: 219
[13] Wang H P, Yao W J, Wei B. Appl Phys Lett, 2006; 89: 201905
[14] Bottinger W J, Aziz M J. Acta Metall, 1989; 37: 3379
[15] Battezzati L, Antonione C, Baricco M. J Alloys Compd, 1997; 247: 164
[16] Loser W, Hermann R, Leonhardt R. Mater Sci Eng, 1997; A224: 53
[17] Lu Y P, Yang G C, Yang C L,Wang H P, Zhou Y H. Progress Nat Sci, 2006; 16: 287
[18] Duhaj P, Švec P. Mater Sci Eng, 1997; A226-228: 245
[19] Schroers J, Holland-Moritz D, Herlach D M. Mater Sci Eng A, 1997; 226-228: 990
[20] Luborsky F E. Amorphous Metallic Alloys. London: Butterworth & Co., 1983: 381
[21] Zhang Z Z. PhD Dissertation, Northwestern Polytechnical University, Xi′an, 1993
(张振忠. 西北工业大学博士学位论文, 西安, 1993)
[22] Saleh A M, Clemente R A. J Appl Phys, 2004; 43: 3624
[23] Emadi D, Whiting L, Djurdjevic M, Kierkus W T, Sokolowski J. MJoM, 2004; 10: 91
[24] Gandin Ch-A, Mosbah S, Volkmann Th, Herlach D M. Acta Mater, 2008; 56: 3023
[25] Yang W, Liu F, Liu H, Wang H F, Yang G C, Zhou Y H. J Cryst Growth, 2009; 311: 3225
[26] Liu F, Sommer F, Mittemeijer E J. J Mater Sci, 2004; 39: 1621
[27] Xu J F, Liu F, Zhang K, Gong M M. Mater Sci Technol, 2012; 28: 274
[28] Christian J W. The Theory of Transformation in Metals and Alloys. OXford: Pergamon Press, 2002: 623
[29] Xu J F, Liu F, Zhang K, Gong M M. Mater Sci Technol, 2012; 28: 274
[30] Valiev R Z, Korasilnikov N A, Tzenev N K. Mater Sci Eng, 1991; A137: 35
[31] Zhang Z Z, Song G S, Yang G C. Progress Nat Sci, 2000; 10: 560
(张振忠, 宋广生, 杨根仓. 自然科学进展, 2000; 10: 560)
[32] Fras E, Lopez H F. Metall Mater Trans, 1999; 30B: 927
[33] Saleh A M, Clemente R A. J Appl Phys, 2004; 43: 3624
[34] Raghavan V. Phase Diagrams of Ternary Iron Alloys Part 6A. New Delhi: Electronic Publishing Center, Green Park Extension. 1993: 11, 406
[35] Boettinger W J, Coriell S R, Trivedi R. Principles Technol, 1988; (IV): 13
[1] MIAO Junwei, WANG Mingliang, ZHANG Aijun, LU Yiping, WANG Tongmin, LI Tingju. Tribological Properties and Wear Mechanism of AlCr1.3TiNi2 Eutectic High-Entropy Alloy at Elevated Temperature[J]. 金属学报, 2023, 59(2): 267-276.
[2] XU Junfeng, ZHANG Baodong, Peter K Galenko. Model of Eutectic Transformation Involving Intermetallic Compound[J]. 金属学报, 2021, 57(10): 1320-1332.
[3] HE Siliang, ZHAO Yunsong, LU Fan, ZHANG Jian, LI Longfei, FENG Qiang. Effects of Hot Isostatic Pressure on Microdefects and Stress Rupture Life of Second-Generation Nickel-Based Single Crystal Superalloy in As-Cast and As-Solid-Solution States[J]. 金属学报, 2020, 56(9): 1195-1205.
[4] Yun LI, Lianjie LIU, Xinming LI, Jinfu LI. Solidification of Undercooled Co75B25 Alloy[J]. 金属学报, 2018, 54(8): 1165-1170.
[5] Kuanhui HU, Xinping MAO, Guifeng ZHOU, Jing LIU, Zhifen WANG. Effect of Si and Mn Contents on the Microstructure and Mechanical Properties of Ultra-High Strength Press Hardening Steel[J]. 金属学报, 2018, 54(8): 1105-1112.
[6] Dandan FAN, Junfeng XU, Yanan ZHONG, Zengyun JIAN. Effect of Superheated Temperature and Cooling Rate on the Solidification of Undercooled Ti Melt[J]. 金属学报, 2018, 54(6): 844-850.
[7] Zengyun JIAN, Tao XU, Junfeng XU, Man ZHU, Fang'e CHANG. Development of Solid-Liquid Interfacial Energyof Melt-Crystal[J]. 金属学报, 2018, 54(5): 766-772.
[8] Bin ZHAI, Kai ZHOU, Peng Lü, Haipeng WANG. Rapid Solidification of Ti-6Al-4V Alloy Micro-Droplets Under Free Fall Condition[J]. 金属学报, 2018, 54(5): 824-830.
[9] Jinfu LI, Yaohe ZHOU. Remelting of Primary Solid in Rapid Solidification of Deeply Undercooled Alloy Melts[J]. 金属学报, 2018, 54(5): 627-636.
[10] Jianglei ZHU, Qing WANG, Haipeng WANG. Thermophysical Properties and Atomic Distribution of Undercooled Liquid Cu[J]. 金属学报, 2017, 53(8): 1018-1024.
[11] Junhui YAN,Zengyun JIAN,Man ZHU,Fang'e CHANG,Junfeng XU. SOLIDIFICATION CHARACTERISTICS AND MICRO-STRUCTURE OF HIGH UNDERCOOLED Al-70%Si ALLOY[J]. 金属学报, 2016, 52(8): 931-937.
[12] WEN Qiang, JIAN Zengyun, ZHU Man, CHANG Fang'e, DANG Bo. EFFECTS OF RE ON THE SOLIDIFICAIION CHARACTERISTICS OF Al-80%Si ALLOY[J]. 金属学报, 2014, 50(5): 610-618.
[13] GUO Xiong, LIN Xin, WANG Zhitai, CAO Yongqing, PENG Dongjian, HUANG Weidong. FORMATION MECHANISM OF ANOMALOUS EUTECTIC AND MICROSTRUCTURE EVOLUTION IN HIGHLY UNDERCOOLED SOLIDIFICATION OF Ni-30%Sn ALLOY[J]. 金属学报, 2013, 29(4): 475-482.
[14] HU Rui, LIU Yi, ZHANG Tiebang, KOU Hongchao, LI Jinshan. PHASE SELECTION AND THE SOLIDIFICATION CHARACTERISTICS OF TiAl BASE ALLOYS IN THE NONEQUILIBRIUM SOLIDIFICATION[J]. 金属学报, 2013, 49(11): 1295-1302.
[15] CHANG Fang'e ZHAO Zhiwei ZHU Man LI Na FANG Wen DONG Guangzhi JIAN Zengyun. SOLIDIFICATION BEHAVIORS OF HIGHLY UNDERCOOLED Ni-21.4%Si EUTECTIC ALLOY[J]. 金属学报, 2012, 48(7): 875-881.
No Suggested Reading articles found!