Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (8): 953-958    DOI: 10.3724/SP.J.1037.2013.00165
Current Issue | Archive | Adv Search |
OBSERVATION ON THE OXIDATION OF LIQUID Al BY ENVIRONMENTAL TRANSMISSION ELECTRON MICROSCOPE
CAI Jun1), LING Guoping1),CHEN Changan2), ZHANG Guikai2)
1)Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027
2)State Key Laboratory of Surface Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621907
Cite this article: 

CAI Jun, LING Guoping,CHEN Changan, ZHANG Guikai. OBSERVATION ON THE OXIDATION OF LIQUID Al BY ENVIRONMENTAL TRANSMISSION ELECTRON MICROSCOPE. Acta Metall Sin, 2013, 49(8): 953-958.

Download:  PDF(3439KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The study of liquid metal oxidation is of particular importance since some liquid metals are highly reactive with oxygen even under ultrahigh vacuum. The investigation of the oxidation behavior of liquid aluminum is strongly demanded due to its wide applications but relatively low melting point. However, it is still ambiguous about the products at the initial oxidation stage of liquid aluminum through the researches done in the past several decades. In order to investigate the initial oxidation products together with the oxidation mechanism of liquid aluminum, in-situ oxidation of nano aluminum powder was carried out at 720℃ in the environmental TEM (E-TEM). Prior to the oxidation, the nano aluminum powder was visualized and analyzed by E-TEM and DTA respectively.The results show that there is an amorphous Al2O3 film of 5—6 nm thick on the surface of the aluminum powder, which transforms toγ-Al2O3 at a temperature range of 350—550℃. By melting the nano powder to liquid followed by cooling under a total pressure of 10-4 Pa in E-TEM, oxide-free solid aluminum is obtained. Re-melting of the solid aluminum at 720℃ yields oxide-free liquid aluminum. After oxidation of the oxide-free liquid aluminum under an oxygen partial pressure of 10-2 Pa in E-TEM, α-Al2O3 nano wires appear on the liquid aluminum surface, demonstrating that the initialoxidation product of liquid aluminum isα-Al2O3. Moreover,the oxidation of liquid aluminum prepared from oxide-free bulk aluminum at 720℃ under an oxygen partial pressure of 10-2 Pa was also studied. The XRD analysis of the products confirms that the oxide is constituted of singleα-Al2O3. Additionally, this particular oxidation result of liquid aluminum is attributed to its liquid structure and vapor oxidation process.

Key words:  liquid Al      oxidation      α-Al2O3      environmental transmission electron microscope     
Received:  24 March 2013     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00165     OR     https://www.ams.org.cn/EN/Y2013/V49/I8/953

[1] Wu C M L, Han G W. Mater Charact, 2007; 58: 416

[2] Pint B A, Moser J L, Tortorelli P F. J Nucl Mater, 2007; 367-370: 1150
[3] Xian A P, Gong G L. J Electron Mater, 2007; 36: 1669
[4] Gong G L, Xian A P. Acta Metall Sin, 2007; 43: 759
 (贡国良, 冼爱平. 金属学报, 2007; 43: 759)
[5] Giuranno D, Arato E, Ricci E. Chem Eng Trans, 2011; 24: 571
[6] Zhang J S, Li N. Corros Sci, 2007; 49: 4154
[7] Nemchinsky V. J Phys, 2012; 45D: 465201
[8] Regan M J, Tostmann H, Pershan P S, Magnussen O M, Dimasi E, Ocko B M, Deutsch M. Phys Rev, 1997; 55B: 10786
[9] Levin I, Brandon D. J Am Ceram Soc, 1998; 81: 1995
[10] Sleppy W C. J Electrochem Soc, 1961; 108: 1097
[11] Moskovits M. Oxid Met, 1972; 5: 1
[12] Impley S A, Stephenson D J, Nicholls J R. Mater Sci Tech-Lond, 1988; 4: 1126
[13] Bergsmark E, Simensen C J, Kofstad P. Mater Sci Eng, 1989; A120: 91
[14] Shimizu K, Kobayashi K, Thompson G E, Wood G C. Oxid Met, 1991; 36: 1
[15] Puri P, Yang V. J Phys Chem, 2007; 111C: 11776
[16] Hasani S, Panjepour M, Shamanian M. Oxid Met, 2012; 78: 179
[17] Kishita K, Sakai H, Tanaka H, Saka H, Kuroda K, Sakamoto M, Watabe A,Kamino T. J Electron Microsc, 2009; 58: 331
[18] Eisenreich N, Fietzek H, Juez-Lorenzo M D, Kolarik V, Koleczko A,Weiser V. Propell Explos Pyrot, 2004; 29: 137
[19] Klumpes R, Maree C H M, Schramm E, Wit J H W. Werkst Korros, 1996; 47: 619
[20] Grabke H J. Intermetallics, 1999; 7: 1153
[21] Josefsson H, Liu F, Svensson J E, Halvarsson M, Johansson L G. Mater Corros,2005; 56: 801
[22] Kitajima Y, Hayashi S, Nishimoto T, Narita T, Ukai S. Oxid Met, 2010; 73: 375
[23] Iida T, Guthrie R I L, translated by Xian A P, Wang L W.The Physical Properties of Liquid Metals. Beijing: Science Press, 2005: 20
(Iida T, Guthrie R I L著, 冼爱平, 王连文译. 液态金属的物理性质. 北京:科学出版社, 2005: 20)
[24] Yang Z Y, Xian A P. Chin J Power Sources, 2011; 35: 66
(杨泽焱, 冼爱平. 电源技术, 2011; 35: 66)
[25] Castello P, Ricci E, Passerone A, Costa P. J Mater Sci, 1994; 29: 6104
[26] Arato E, Ricci E, Costa P. J Mater Sci, 2005; 40: 2133
[1] HUANG Ding, QIAO Yanxin, YANG Lanlan, WANG Jinlong, CHEN Minghui, ZHU Shenglong, WANG Fuhui. Effect of Shot Peening of Substrate Surface on Cyclic Oxidation Behavior of Sputtered Nanocrystalline Coating[J]. 金属学报, 2023, 59(5): 668-678.
[2] SHEN Zhao, WANG Zhipeng, HU Bo, LI Dejiang, ZENG Xiaoqin, DING Wenjiang. Research Progress on the Mechanisms Controlling High-Temperature Oxidation Resistance of Mg Alloys[J]. 金属学报, 2023, 59(3): 371-386.
[3] LIU Laidi, DING Biao, REN Weili, ZHONG Yunbo, WANG Hui, WANG Qiuliang. Multilayer Structure of DZ445 Ni-Based Superalloy Formed by Long Time Oxidation at High Temperature[J]. 金属学报, 2023, 59(3): 387-398.
[4] LI Xin, JIANG He, YAO Zhihao, DONG Jianxin. Theoretical Calculation and Analysis of the Effect of Oxygen Atom on the Grain Boundary of Superalloy Matrices Ni, Co and NiCr[J]. 金属学报, 2023, 59(2): 309-318.
[5] XU Wenguo, HAO Wenjiang, LI Yingju, ZHAO Qingbin, LU Bingyu, GUO Heyi, LIU Tianyu, FENG Xiaohui, YANG Yuansheng. Effects of Trace Aluminum and Titanium on High Temper-ature Oxidation Behavior of Inconel 690 Alloy[J]. 金属学报, 2023, 59(12): 1547-1558.
[6] JIN Xinyan, CHU Shuangjie, PENG Jun, HU Guangkui. Effect of Dew Point on Selective Oxidation and Decarburization of 0.2%C-1.5%Si-2.5%Mn High Strength Steel Sheet During Continuous Annealing[J]. 金属学报, 2023, 59(10): 1324-1334.
[7] HU Min, ZHOU Shengyu, GUO Jingyuan, HU Minghao, LI Chong, LI Huijun, WANG Zumin, LIU Yongchang. Oxidation Behavior of Micro-Regions in Multiphase Ni3Al-Based Superalloys[J]. 金属学报, 2023, 59(10): 1346-1354.
[8] CONG Hongda, WANG Jinlong, WANG Cheng, NING Shen, GAO Ruoheng, DU Yao, CHEN Minghui, ZHU Shenglong, WANG Fuhui. A New Design Inorganic Silicate Composite Coating and Its Oxidation Behavior at High Temperature in Steam Atmosphere[J]. 金属学报, 2022, 58(8): 1083-1092.
[9] XIE Leipeng, SUN Wenyao, CHEN Minghui, WANG Jinlong, WANG Fuhui. Effects of Processing on Microstructures and Properties of FGH4097 Superalloy[J]. 金属学报, 2022, 58(8): 992-1002.
[10] ZHAO Xiaofeng, LI Ling, ZHANG Han, LU Jie. Research Progress in High-Entropy Alloy Bond Coat Material for Thermal Barrier Coatings[J]. 金属学报, 2022, 58(4): 503-512.
[11] SU Kaixin, ZHANG Jiwang, ZHANG Yanbin, YAN Tao, LI Hang, JI Dongdong. High-Cycle Fatigue Properties and Residual Stress Relaxation Mechanism of Micro-Arc Oxidation 6082-T6 Aluminum Alloy[J]. 金属学报, 2022, 58(3): 334-344.
[12] PENG Jun, JIN Xinyan, ZHONG Yong, WANG Li. Influence of Substrate Surface Structure on the Galvanizability of Fe-16Mn-0.7C-1.5Al TWIP Steel Sheet[J]. 金属学报, 2022, 58(12): 1600-1610.
[13] CAO Chao, JIANG Chengyang, LU Jintao, CHEN Minghui, GENG Shujiang, WANG Fuhui. Corrosion Behavior of Austenitic Stainless Steel with Different Cr Contents in 700oC Coal Ash/High Sulfur Flue-Gas Environment[J]. 金属学报, 2022, 58(1): 67-74.
[14] CHEN Shenghu, RONG Lijian. Oxide Scale Formation on Ultrafine-Grained Ferritic-Martensitic Steel During Pre-Oxidation and Its Effect on the Corrosion Performance in Stagnant Liquid Pb-Bi Eutectic[J]. 金属学报, 2021, 57(8): 989-999.
[15] PI Huilong, SHI Xiaolei, XU Xingxiang. Effect of SiC-ZrC Coating Prepared by SiZr Liquid Phase Sintering on the Oxidation Resistance of C/SiC Composites[J]. 金属学报, 2021, 57(6): 791-796.
No Suggested Reading articles found!