Please wait a minute...
Acta Metall Sin  2021, Vol. 57 Issue (6): 791-796    DOI: 10.11900/0412.1961.2020.00357
Research paper Current Issue | Archive | Adv Search |
Effect of SiC-ZrC Coating Prepared by SiZr Liquid Phase Sintering on the Oxidation Resistance of C/SiC Composites
PI Huilong1, SHI Xiaolei2(), XU Xingxiang2
1.State Key Laboratory of Thermostructural Composite Materials, Northwestern Polytechnical University, Xi'an 710072, China
2.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

PI Huilong, SHI Xiaolei, XU Xingxiang. Effect of SiC-ZrC Coating Prepared by SiZr Liquid Phase Sintering on the Oxidation Resistance of C/SiC Composites. Acta Metall Sin, 2021, 57(6): 791-796.

Download:  HTML  PDF(7338KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Owing to their low density and good mechanical properties at high temperatures, C/SiC composites are increasingly used in the aerospace industry. They are also being proposed as thermal-structural materials in the hypersonic field; however, C/SiC composites are easily oxidized in high-temperature air environments. In this study, a C/SiC composite was coated with a SiC-ZrC oxidation-resistant layer by a two-step sintering method using Si-25%Zr (mass fraction) alloy, and the phase evolution of the coating was studied during the sintering. The oxidation resistance of the material was then tested at 1400oC in an air environment. The microstructural changes of the coating before and after oxidation and the effect of oxidation on the bending properties of C/SiC were analyzed. After the reaction with carbon, Si and ZrSi2 disappear in the coating, leaving only pure ZrC and SiC. The ZrC phase refined the structure of the reactive SiC layer. The grain size of the sintered SiC was 2 μm, versus 5-20 μm for SiC sintered from pure Si. The refined grains created a dense and continuous SiO2 film during the oxidation process. As the oxidation time was increased at 1400oC, the C/SiC composite with the SiC-ZrC coating began losing weight at 200 s, but began gaining weight at 500 s as a dense SiO2 film was formed. After 1000 s of oxidation, the flexural strength of the C/SiC composites was 335 MPa, only 5% lower than that of the initial C/SiC composite. According to this result, the sintered SiC-ZrC oxidation-resistant film effectively protected the mechanical properties of the C/SiC composite during the oxidation process.

Key words:  oxidation resistant coating      SiC-ZrC      liquid-phase sintering     
Received:  09 September 2020     
ZTFLH:  TB332  
About author:  SHI Xiaolei, associate professor, Tel: (024)83978061, E-mail: xlshi@imr.ac.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2020.00357     OR     https://www.ams.org.cn/EN/Y2021/V57/I6/791

Fig.1  SEM image of cross-section morphology of C/SiC composite by reactive infiltration process
Fig.2  Cross-section (a) and surface (b) SEM images of SiC coating formed on the surface of C/SiC-Si sample
Fig.3  Cross-section (a) and surface (b, c) SEM images of SiC-ZrC coating formed on the surface of C/SiC-SiZr sample (Fig.3c shows the BSE image)
Fig.4  XRD spectra of coatings formed on the surface of C/SiC-Si (a) and C/SiC-SiZr (b) samples
Fig.5  Mass ratios of C/SiC composite samples with different coatings before and after oxidation at 1400oC for different time (m1 showed the mass after oxidation and m2 showed the initial mass)
Fig.6  Surface SEM images of C/SiC-Si (a) and C/SiC-SiZr (b) samples after oxidation at 1400oC for 1000 s
1 Nie T, Liu W Q. Application of C/SiC composites in thermal protection system of nose-cone [J]. Comput. Simul., 2013, 30(9): 109
聂 涛, 刘伟强. C/SiC复合材料在鼻锥热防护系统中的应用研究 [J]. 计算机仿真, 2013, 30(9): 109
2 Xiao P, Xiong X, Zhang H B, et al. Progress and application of C/C-SiC ceramic braking materials [J]. Chin. J. Nonferrous Met., 2005, 15: 667
肖 鹏, 熊 翔, 张红波等. C/C-SiC陶瓷制动材料的研究现状与应用 [J]. 中国有色金属学报, 2005, 15: 667
3 Ma Q S, Liu H T, Pan Y, et al. Research progress on the application of C/SiC composites in scramjet [J]. J. Inorg. Mater., 2013, 28: 247
马青松, 刘海韬, 潘 余等. C/SiC复合材料在超燃冲压发动机中的应用研究进展 [J]. 无机材料学报, 2013, 28: 247
4 Zhu X J, Xia Y W. Application of C/SiC composites in space optical system abroad [J]. Aerosp. Mater. Technol., 2013, 43(4): 20
朱晓娟, 夏英伟. C/SiC材料在国外空间光学系统上的应用 [J]. 宇航材料工艺, 2013, 43(4): 20
5 Zhang Y, Feng D, Chen X C. Development of properties and process on continuous fiber reinforced SiC composite [J]. Mater. Rev., 2005, 19(3): 63
张 勇, 冯 涤, 陈希春. 连续纤维增强SiC复合材料制备工艺与性能研究进展 [J]. 材料导报, 2005, 19(3): 63
6 Xie W J, Qiu H P, Chen M W, et al. Influence of carbon fiber treatment on flexural properties of C/SiC composites [J]. Solid State Phenom., 2018, 281: 408
7 Li J S, Zhang C R, Li B. Advances in boron nitride interphases in ceramic matrix composites [J]. Mater. Rev., 2011, 25(17): 14
李俊生, 张长瑞, 李 斌. 陶瓷基复合材料中氮化硼界面相研究进展 [J]. 材料导报, 2011, 25(17): 14
8 Li C G. Effects of elevated temperature on the structures and tensile properties of PAN-based carbon fibers [D]. Harbin: Harbin Institute of Technology, 2014
李承高. 高温处理对PAN基碳纤维结构与拉伸性能的影响 [D]. 哈尔滨: 哈尔滨工业大学, 2014
9 Wen H M, Dong S M, Ding Y S, et al. SiC/Yb2SiO5 multilayer coatings for oxidation protection of Cf/SiC composites [J]. Rare Met. Mater. Eng., 2009, 38: 1580
温海明, 董绍明, 丁玉生等. Cf/SiC复合材料SiC/Yb2SiO5抗氧化复合涂层研究 [J]. 稀有金属材料与工程, 2009, 38: 1580
10 Ma Q S, Cai L H. Fabrication of Y2Si2O7 coating and its oxidation protection for C/SiC composites [J]. Trans. Nonferrous Met. Soc. China, 2017, 27: 390
11 Ma Q S, Cai L H. Fabrication and oxidation resistance of mullite/yttrium silicate multilayer coatings on C/SiC composites [J]. J. Adv. Ceram., 2017, 6: 360
12 Zhang W H, Cheng L F, Zhang L T, et al. Preparation and anti-oxidation behavior of Si-C-B self-healing coating on C/SiC composite [J]. J. Inorg. Mater., 2008, 23: 774
张伟华, 成来飞, 张立同等. C/SiC复合材料表面Si-C-B自愈合涂层的制备与抗氧化行为 [J]. 无机材料学报, 2008, 23: 774
13 Yan Z Q, Xiong X, Xiao P, et al. Preparation of SiC coatings on surface of C/SiC composites by the chemical vapor deposition and their oxidation resistance behavior [J]. J. Chin. Ceram. Soc., 2008, 36: 1098
闫志巧, 熊 翔, 肖 鹏等. C/SiC复合材料表面化学气相沉积涂覆SiC涂层及其抗氧化性能 [J]. 硅酸盐学报, 2008, 36: 1098
14 Cheng L F, Xu Y D, Zhang L T, et al. Oxidation and defect control of CVD SiC coating on three-dimensional C/SiC composites [J]. Carbon, 2002, 40: 2229
15 Wu S J, Cheng L F, Zhang L T, et al. Oxidation behavior of 2D C/SiC with a multi-layer CVD SiC coating [J]. Surf. Coat. Technol., 2006, 200: 4489
16 Hwang K J, Bae S Y, Kim K H, et al. Controlled infiltration profile of SiC coating layer on graphite by Si vapor deposition reaction [J]. J. Ceram. Process. Res., 2019, 20: 169
17 Kang P C, Chen G Q, Zhang B, et al. Oxidation protection of carbon fibers by a reaction sintered nanostructured SiC coating [J]. Surf. Coat. Technol., 2011, 206: 305
18 Zhao Y W, Sun W T, Li J P, et al. Preparation and microstructure of C/C-SiC composites by reactive melt infiltration [J]. Aerosp. Mater. Technol., 2013, (2): 64
赵彦伟, 孙文婷, 李军平等. C/C-SiC复合材料的反应熔渗法制备与微观组织 [J]. 宇航材料工艺, 2013, (2): 64
19 Yan Z Q, Xiong X, Xiao P, et al. Oxidation kinetics and mechanism of C/SiC composites fabricated by MSI process [J]. J. Inorg. Mater., 2007, 22: 1151
闫志巧, 熊 翔, 肖 鹏等. MSI工艺制备C/SiC复合材料的氧化动力学和机理 [J]. 无机材料学报, 2007, 22: 1151
20 Wang J P, Jin Z H, Qian J M, et al. Research progress on mechanism and kinetics of C/C-SiC composites prepared by reactive melt infiltration [J]. J. Chin. Ceram. Soc., 2005, 33: 1120
王继平, 金志浩, 钱军民等. 反应熔渗法制备C/C-SiC复合材料及其反应机理和动力学的研究进展 [J]. 硅酸盐学报, 2005, 33: 1120
21 Pampuch R, Walasek E, Bialoskórski J. Reaction mechanism in carbon-liquid silicon systems at elevated temperatures [J]. Ceram. Int., 1986, 12: 99
22 Sawyer G R, Page T F. Microstructural characterization of “REFEL” (reaction-bonded) silicon carbides [J]. J. Mater. Sci., 1978, 13: 885
23 Ness J N, Page T F. Microstructural evolution in reaction-bonded silicon carbide [J]. J. Mater. Sci., 1986, 21: 1377
24 He Z J, Sun L B, Li C, et al. Wetting and brazing of Cf /C composites with Si-Zr eutectic alloy: The formation of nano- and coarse-SiC reaction layers [J]. Carbon, 2020, 167: 92
25 Yin X G. Study on mechanic and high-temperature properties of C/SiC ceramic based composites [D]. Beijing: Tsinghua University, 2011
殷晓光. C/SiC陶瓷基复合材料的力学及高温性能研究 [D]. 北京: 清华大学, 2011
[1] . Anomalous Co-deposition Behaviors and Corrosive Properties of Ni-Co-Zn Ternary Alloys[J]. 金属学报, 0, (): 0-0.
[2] ;. Microstructural morphology and irregular eutectic growth of directionally solidified Al2O3/YAG eutectic in situ composite[J]. 金属学报, 2008, 44(4): 457-462 .
[3] . Electromaganic Wave Absorbing Property of Polyaniline / Polystylene Blends[J]. 金属学报, 2007, 43(4): 409-412 .
[4] . UNSTABLE TEMPERATURE FIELD FOR THERMAL-GRADIENT CVI DENSIFICATION PROCESS[J]. 金属学报, 2006, 42(10): 1046-1050 .
[5] . ADVANCES IN THERMOSETTING POLYMER—BASED NANOCOMPOSITES[J]. 金属学报, 2004, 40(8): 0-840 .
[6] . [J]. 金属学报, 2001, 37(12): 1285-1288 .
[7] . [J]. 金属学报, 2001, 37(9): 897-899 .
[8] . [J]. 金属学报, 2001, 37(3): 325-331 .
[9] . [J]. 金属学报, 1999, 35(11): 1224-1228 .
[10] . [J]. 金属学报, 1999, 35(8): 879-882 .
[11] . [J]. 金属学报, 1999, 35(8): 893-896 .
[12] . [J]. 金属学报, 1999, 35(7): 685-688 .
No Suggested Reading articles found!