Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (10): 1175-1185    DOI: 10.3724/SP.J.1037.2012.00236
Current Issue | Archive | Adv Search |
RESEARCH ON DYNAMIC RECRYSTALLIZATION BEHAVIOR OF INCOLOY 800H
CAO Yu1, DI Hongshuang1, ZHANG Jiecen1, ZHANG Jingqi1, MA Tianjun2
1.State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819
2.Special Steel Business Unit, Baoshan Iron&Steel Co., Ltd., Shanghai 200940
Cite this article: 

CAO Yu DI Hongshuang ZHANG Jiecen ZHANG Jingqi MA Tianjun. RESEARCH ON DYNAMIC RECRYSTALLIZATION BEHAVIOR OF INCOLOY 800H. Acta Metall Sin, 2012, 48(10): 1175-1185.

Download:  PDF(3458KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In order to optimize the hot working technology of Incoloy 800H, the dynamic recrystallization (DRX) behavior of Incoloy 800H at temperatures ranging from 850 ℃ to 1100 ℃ and strain rates from 0.01 s-1 to 10 s-1 was investigated by single–pass compression tests on MMS–300 thermo–mechanical simulator. The evolutions of microstructure and nucleation mechanisms of DRX were analyzed combined with the technique of EBSD and TEM. The results show that when the deformation temperature is below 950 ℃, the behavior of DRX is obviously restrained by precipitation of Cr23C6 and Ti(C,N). Therefore the hot deformation constitutive equations in two temperature intervals (from 850 ℃ to 950 ℃and from 950 ℃ to 1100 ℃) were established by regression analysis with the deformation activation energy of 465.394 kJ/mol and 427.360 kJ/mol respectively. The inflection points were determined by fitting a third order polynomial to the lnθ–ε curves, which makes the prediction for the ratios of critical stress to peak stress and critical strain to peak strain more accurately. Accordingly, the mathematical models of critical stress and critical strain vs Z parameter were deduced. The DRX nucleation mechanisms of Incoloy 800H during hot deformation mainly include strain induced grain boundary migration, grain fragmentation and subgrain coalescence.

Key words:  Incoloy 800H      dynamic recrystallization      constitutive equation      critical strain      strain induced grain boundary migration     
Received:  27 April 2012     
ZTFLH:  TG146.4  
Fund: 

Supported by National Basic Research Program of China (No.2011CB606306–2)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00236     OR     https://www.ams.org.cn/EN/Y2012/V48/I10/1175

[1] Tan L, Rakotojaona L, Allen T R, Nanstad R K, Busby J T. Mater Sci Eng, 2011; A528: 2755

[2] Br¨unger E, Wang X, Gottstein G. Scr Mater, 1998; 38: 1843

[3] Wang X, Br¨unger E, Gottstein G. Mater Sci Eng, 2000; A290: 180

[4] Wang X, Br¨unger E, Gottstein G. Scr Mater, 2002; 46: 875

[5] Gottstein G, Frommert M, Goerdeler M, Sch¨afer N. Mater Sci Eng, 2004; A387–389: 604

[6] Abd El–Azim M E. J Nucl Mater, 1996; 231: 146

[7] Frommert M, Gottstein G. Mater Sci Eng, 2009; A506: 101

[8] Sun C Y, Liu J R, Li R, Zhang Q D. Acta Metall Sin, 2011; 47: 191

(孙朝阳, 刘金榕, 李瑞, 张清东. 金属学报, 2011; 47: 191)

[9] McQueen H J, Ryan N D. Mater Sci Eng, 2002; A322: 43

[10] Venugopal S, Mannan S L, Rodriguez P. J Mater Sci, 2004; 39: 5557

[11] Naderi M, Durrenberger L, Bleck W. Mater Sci Eng, 2008; A478: 130

[12] McQueen H J. Mater Sci Eng, 2004; A387: 203

[13] Spigarelli S, Evangelista E, McQueen H J. Scr Mater, 2003; 49: 179

[14] Chen L Q, Zhao Y, Xu X Q, Liu X H. Acta Metall Sin, 2010; 46: 1219

(陈礼清, 赵阳, 徐香秋, 刘相华. 金属学报, 2010; 46: 1219)

[15] Momeni A, Dehghani K, Keshmiri H, Ebrahimi G R. Mater Sci Eng, 2010; A527: 1607

[16] Zhang M J, Li F G, Wang S Y, Liu C Y. Mater Sci Eng, 2010; A527: 6778

[17] Cao Y, Di H S, Ma T J, Zhang J Q. J Northeastern Univ (Nat Sci Ed), 2012; 33: 215

(曹宇, 邸洪双, 马天军, 张敬奇. 东北大学学报(自然科学版), 2012; 33: 215)

[18] Poliak E I, Jonas J J. Acta Mater, 1996; 44: 127

[19] Ryan N D, McQueen H J. Can Metall Q, 1990; 29: 150

[20] Barnett M R, Kelly G L, Hodgson P D. Scr Mater, 2000; 43: 366

[21] Gottstein G, Frommert M, Goerdeler M. Mater Sci Eng, 2004; A387–389: 604

[22] Poliak E I, Jonas J J. ISIJ Int, 2003; 43: 684

[23] Najafizadeh A, Jonas J J. ISIJ Int, 2006; 46: 1679

[24] Mirzadeh H, Najafizadeh A. Mater Des, 2010; 31: 1174

[25] McQueen H J, Yue S, Ryan N D, Fry E. J Mater Process Technol, 1995; 53: 295

[26] Hansen N, Huang X. Acta Metall, 1998; 46: 1827

[27] Yu J W, Liu X F, Xie J X. Acta Metall Sin, 2011; 47: 486

(余均武, 刘雪峰, 谢建新. 金属学报, 2011; 47: 486)

[28] Winning M. Scr Mater, 2008; 58: 86

[1] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[2] WANG Kai, JIN Xi, JIAO Zhiming, QIAO Junwei. Mechanical Behaviors and Deformation Constitutive Equations of CrFeNi Medium-Entropy Alloys Under Tensile Conditions from 77 K to 1073 K[J]. 金属学报, 2023, 59(2): 277-288.
[3] LOU Feng, LIU Ke, LIU Jinxue, DONG Hanwu, LI Shubo, DU Wenbo. Microstructures and Formability of the As-Rolled Mg- xZn-0.5Er Alloy Sheets at Room Temperature[J]. 金属学报, 2023, 59(11): 1439-1447.
[4] WU Caihong, FENG Di, ZANG Qianhao, FAN Shichun, ZHANG Hao, LEE Yunsoo. Microstructure Evolution and Recrystallization Behavior During Hot Deformation of Spray Formed AlSiCuMg Alloy[J]. 金属学报, 2022, 58(7): 932-942.
[5] REN Shaofei, ZHANG Jianyang, ZHANG Xinfang, SUN Mingyue, XU Bin, CUI Chuanyong. Evolution of Interfacial Microstructure of Ni-Co Base Superalloy During Plastic Deformation Bonding and Its Bonding Mechanism[J]. 金属学报, 2022, 58(2): 129-140.
[6] JIANG Weining, WU Xiaolong, YANG Ping, GU Xinfu, XIE Qingge. Formation of Dynamic Recrystallization Zone and Characteristics of Shear Texture in Surface Layer of Hot-Rolled Silicon Steel[J]. 金属学报, 2022, 58(12): 1545-1556.
[7] NI Ke, YANG Yinhui, CAO Jianchun, WANG Liuhang, LIU Zehui, QIAN Hao. Softening Behavior of 18.7Cr-1.0Ni-5.8Mn-0.2N Low Nickel-Type Duplex Stainless Steel During Hot Compression Deformation Under Large Strain[J]. 金属学报, 2021, 57(2): 224-236.
[8] LIU Qingqi, LU Ye, ZHANG Yifei, FAN Xiaofeng, LI Rui, LIU Xingshuo, TONG Xue, YU Pengfei, LI Gong. Thermal Deformation Behavior of Al19.3Co15Cr15Ni50.7 High Entropy Alloy[J]. 金属学报, 2021, 57(10): 1299-1308.
[9] ZHAO Manman, QIN Sen, FENG Jie, DAI Yongjuan, GUO Dong. Effect of Al and Ni on Hot Deformation Behavior of 1Cr9Al(1~3)Ni(1~7)WVNbB Steel[J]. 金属学报, 2020, 56(7): 960-968.
[10] CHEN Wenxiong, HU Baojia, JIA Chunni, ZHENG Chengwu, LI Dianzhong. Post-Dynamic Softening of Austenite in a Ni-30%Fe Model Alloy After Hot Deformation[J]. 金属学报, 2020, 56(6): 874-884.
[11] ZHANG Yang, SHAO Jianbo, CHEN Tao, LIU Chuming, CHEN Zhiyong. Deformation Mechanism and Dynamic Recrystallization of Mg-5.6Gd-0.8Zn Alloy During Multi-Directional Forging[J]. 金属学报, 2020, 56(5): 723-735.
[12] WU Huajian, CHENG Renshan, LI Jingren, XIE Dongsheng, SONG Kai, PAN Hucheng, QIN Gaowu. Effect of Al Content on Microstructure and Mechanical Properties of Mg-Sn-Ca Alloy[J]. 金属学报, 2020, 56(10): 1423-1432.
[13] ZHANG Yong, LI Xinxu, WEI Kang, WAN Zhipeng, JIA Chonglin, WANG Tao, LI Zhao, SUN Yu, LIANG Hongyan. Hot Deformation Characteristics of Novel Wrought Superalloy GH4975 Extruded Rod Used for 850 ℃ Turbine Disc[J]. 金属学报, 2020, 56(10): 1401-1410.
[14] Xu LI,Qingbo YANG,Xiangze FAN,Yonglin GUO,Lin LIN,Zhiqing ZHANG. Influence of Deformation Parameters on Dynamic Recrystallization of 2195 Al-Li Alloy[J]. 金属学报, 2019, 55(6): 709-719.
[15] Yahui DENG,Yinhui YANG,Jianchun CAO,Hao QIAN. Research on Dynamic Recrystallization Behavior of 23Cr-2.2Ni-6.3Mn-0.26N Low Nickel TypeDuplex Stainless Steel[J]. 金属学报, 2019, 55(4): 445-456.
No Suggested Reading articles found!