Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (5): 528-534    DOI: 10.3724/SP.J.1037.2011.00004
论文 Current Issue | Archive | Adv Search |
EXPERIMENTAL AND MODELING STUDIES ON THE STRUCTURE FORMATION OF HIGH PRESSURE DIE CAST MAGNESIUM ALLOY CONSIDERING THE EXTERNALLY SOLIDIFIED CRYSTALS IN THE SHOT SLEEVE\par
WU Mengwu, XIONG Shoumei
State Key Laboratory of Automobile Safety and Energy, Department of Mechanical Engineering, Tsinghua University, Beijing 100084
Cite this article: 

WU Mengwu XIONG Shoumei. EXPERIMENTAL AND MODELING STUDIES ON THE STRUCTURE FORMATION OF HIGH PRESSURE DIE CAST MAGNESIUM ALLOY CONSIDERING THE EXTERNALLY SOLIDIFIED CRYSTALS IN THE SHOT SLEEVE\par. Acta Metall Sin, 2011, 47(5): 528-534.

Download:  PDF(1365KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The externally solidified crystals (ESCs) in the shot sleeve have a great influence on the final structure of magnesium alloy during cold-chamber high pressure die casting (HPDC) process. In typical HPDC microstructure, a surface layer with uniformly fine grains and a central region containing a mixture of coarse ESCs and fine grains are commonly observed from the cross section of the castings. In the present work, experiments were conducted to investigate the effects of process parameters on the formation of ESCs in the shot sleeve and the final microstructure of magnesium alloy, especially focusing on the grain size, the morphology and distribution of the ESCs. Based on cellular automaton method, a numerical model was developed to simulate the microstructure evolution of magnesium alloy under HPDC process. According to experimental statistics relating the area fraction of the ESCs, a nucleation model was established in which the ESCs in the shot sleeve were taken into account. Simulations were carried out to predict the microstructure of “step-shape” die castings of AM50 magnesium alloy with different process parameters. It was found that the simulated results were in accordance with the experimental ones.
Key words:  magnesium alloy      high pressure die casting      externally solidified crystals      nucleation model      microstructure simulation     
Received:  05 January 2011     
ZTFLH: 

TG244

 
  TG249.2

 
Fund: 

Supported by National Science and Technology Major Project (No.2011ZX04014-052), National High Technology Research and Development Program of China (No.2009AA03Z114) and Toyo Machinery & Metal Co., Ltd. (No.083000148)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00004     OR     https://www.ams.org.cn/EN/Y2011/V47/I5/528

[1] Aghion E, Bronfin B. Mater Sci Forum, 2000; 350: 19

[2] Mordike B L, Ebert T. Mater Sci Eng, 2001; A302: 37

[3] Li R D, Yu H P, Yuan X G. Foundry, 2003; 52: 597

(李荣德, 于海朋, 袁晓光. 铸造, 2003; 52: 597)

[4] Boettinger W J, Coriell S R, Greer A L, Karma A, Kurz W, Rappaz M, Trivedi R. Acta Mater, 2000; 48: 43

[5] Laukli H I, Lohne O, Sannes S, Gjestland H, Arnberg L. Int J Cast Met Res, 2003; 16: 515

[6] Helenius R, Lohne O, Arnberg L, Laukli H I. Mater Sci Eng, 2005; A413: 52

[7] Yamagata H, Kasprzak W, Aniolek M, Kurita H, Sokolowski J H. J Mater Process Technol, 2008; 203: 333

[8] Laukli H I, Arnberg L, Lohne O. Int J CastMet Res, 2005; 18: 65

[9] Laukli H I, Gourlay C M, Dahle A K. Metall Mater Trans, 2005; 36A: 805

[10] Cao H, Wess´en M. Int J Cast Met Res, 2005; 18: 377

[11] Dahle A K, Sannes S, StJohn D H, Westengen H. J Light Met, 2001; 1: 99

[12] Th´evoz P, Desbiolles J L, Rappaz M. Metall Trans, 1989; 20A: 311

[13] Rappaz M, Gandin C A, Desbiolles J L, Th´evoz P. Metall Mater Trans, 1996; 27A: 695

[14] Nastac L. Acta Mater, 1999; 47: 4253

[15] Beltran–Sanchez L, Stefanescu D M. Metall Mater Trans, 2004; 35A: 2471

[16] Wang W, Lee P D, Mclean M. Acta Mater, 2003; 51: 2971

[17] Li Q, Li D Z, Qian B N. Acta Matall Sin, 2004; 40: 634

(李强, 李殿中, 钱百年. 金属学报, 2004; 40: 634)

[18] Chen J, Zhu M F, Sun G X. Acta Matall Sin, 2005; 41: 799

(陈 晋, 朱鸣芳, 孙国雄. 金属学报, 2005; 41: 799)

[19] Zhu M F, Stefanescu D M. Acta Mater, 2007; 55: 1741

[20] Ohsasa K, Matsuura K, Kurokawa K, Watanabe S. Mater Sci Forum, 2008; 575: 154

[21] Guo Z P, Xiong S M, Cho S H, Choi J K. Acta Matall Sin, 2007; 43: 103

(郭志鹏, 熊守美, 曺尚铉, 崔正吉. 金属学报, 2007; 43: 103)

[22] Wu M W, Xiong S M. Acta Matall Sin, 2010; 46: 1534

(吴孟武, 熊守美. 金属学报, 2010; 46: 1534)
[1] SHAO Xiaohong, PENG Zhenzhen, JIN Qianqian, MA Xiuliang. Unravelling the {101¯2} Twin Intersection Between LPSO Structure/SFs in Magnesium Alloy[J]. 金属学报, 2023, 59(4): 556-566.
[2] TANG Weineng, MO Ning, HOU Juan. Research Progress of Additively Manufactured Magnesium Alloys: A Review[J]. 金属学报, 2023, 59(2): 205-225.
[3] ZHU Yunpeng, QIN Jiayu, WANG Jinhui, MA Hongbin, JIN Peipeng, LI Peijie. Microstructure and Properties of AZ61 Ultra-Fine Grained Magnesium Alloy Prepared by Mechanical Milling and Powder Metallurgy Processing[J]. 金属学报, 2023, 59(2): 257-266.
[4] CHEN Yang, MAO Pingli, LIU Zheng, WANG Zhi, CAO Gengsheng. Detwinning Behaviors and Dynamic Mechanical Properties of Precompressed AZ31 Magnesium Alloy Subjected to High Strain Rates Impact[J]. 金属学报, 2022, 58(5): 660-672.
[5] ZENG Xiaoqin, WANG Jie, YING Tao, DING Wenjiang. Recent Progress on Thermal Conductivity of Magnesium and Its Alloys[J]. 金属学报, 2022, 58(4): 400-411.
[6] LI Shaojie, JIN Jianfeng, SONG Yuhao, WANG Mingtao, TANG Shuai, ZONG Yaping, QIN Gaowu. Multimodal Microstructure of Mg-Gd-Y Alloy Through an Integrated Simulation of Process-Structure-Property[J]. 金属学报, 2022, 58(1): 114-128.
[7] PAN Fusheng, JIANG Bin. Development and Application of Plastic Processing Technologies of Magnesium Alloys[J]. 金属学报, 2021, 57(11): 1362-1379.
[8] WANG Huiyuan, XIA Nan, BU Ruyu, WANG Cheng, ZHA Min, YANG Zhizheng. Current Research and Future Prospect on Low-Alloyed High-Performance Wrought Magnesium Alloys[J]. 金属学报, 2021, 57(11): 1429-1437.
[9] WANG Xuemei, YIN Zhengzheng, YU Xiaotong, ZOU Yuhong, ZENG Rongchang. Comparison of Corrosion Resistance of Phenylalanine, Methionine, and Asparagine-Induced Ca-P Coatings on AZ31 Magnesium Alloys[J]. 金属学报, 2021, 57(10): 1258-1271.
[10] ZHANG Yang, SHAO Jianbo, CHEN Tao, LIU Chuming, CHEN Zhiyong. Deformation Mechanism and Dynamic Recrystallization of Mg-5.6Gd-0.8Zn Alloy During Multi-Directional Forging[J]. 金属学报, 2020, 56(5): 723-735.
[11] Rongchang ZENG, Lanyue CUI, Wei KE. Biomedical Magnesium Alloys: Composition, Microstructure and Corrosion[J]. 金属学报, 2018, 54(9): 1215-1235.
[12] Yanyu LIU, Pingli MAO, Zheng LIU, Feng WANG, Zhi WANG. Theoretical Calculation of Schmid Factor and Its Application Under High Strain Rate Deformation in Magnesium Alloys[J]. 金属学报, 2018, 54(6): 950-958.
[13] Guohua WU, Yushi CHEN, Wenjiang DING. Current Research and Future Prospect on Microstructures Controlling of High Performance Magnesium Alloys During Solidification[J]. 金属学报, 2018, 54(5): 637-646.
[14] Xudong LI, Pingli MAO, Yanyu LIU, Zheng LIU, Zhi WANG, Feng WANG. Anisotropy and Deformation Mechanisms ofAs-Extruded Mg-3Zn-1Y Magnesium AlloyUnder High Strain Rates[J]. 金属学报, 2018, 54(4): 557-565.
[15] Shoumei XIONG, Jinglian DU, Zhipeng GUO, Manhong YANG, Mengwu WU, Cheng BI, Yongyou CAO. Characterization and Modeling Study on Interfacial Heat Transfer Behavior and Solidified Microstructure of Die Cast Magnesium Alloys[J]. 金属学报, 2018, 54(2): 174-192.
No Suggested Reading articles found!