Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (1): 34-40    DOI: 10.3724/SP.J.1037.2010.00189
论文 Current Issue | Archive | Adv Search |
HOT DEFORMATION BEHAVIOR OF A HIGH STRENGTH CONTAINER STEEL COMPOUNDED WITH Nb-B
SONG Renbo1), ZHANG Yongkun1),  WEN Xinli2),  JIA Yisu1)
1) School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083
2) Hot Rolling Strip Plant, Anshan Iron & Steel Co., Ltd., Anshan 114000
Cite this article: 

SONG Renbo ZHANG Yongkun WEN Xinli JIA Yisu. HOT DEFORMATION BEHAVIOR OF A HIGH STRENGTH CONTAINER STEEL COMPOUNDED WITH Nb-B. Acta Metall Sin, 2011, 47(1): 34-40.

Download:  PDF(1159KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Hot deformation behaviors of high strength container steel compounded with Nb-B have been systematically studied through high temperature compression tests on the Gleeble-1500 thermal-mechanical simulator. In the present deformation conditions, there are different relationships between the strain hardening exponent (n) and the true strain (ε) under different strain rates at the deformation temperature of 1423 K; n-ε curves have single peak and single valley at the strain rates of 0.1 s-1 and 1 s-1, while n-ε curves have double peaks and double valleys at the strain rates of 5 s-1 and 15 s-1. During the heat work-hardening process, dislocation strengthening, twin strengthening and precipitation strengthening are the major work-hardening mechanisms of the tested steel. According to Zener-Hollomon and Ludwik equation, the experimental data have been regressed by using nonlinear method, the apparent deformation activation energy (Q) and stress exponent (n) were obtained to be about (428.188±20.109) kJ/mol and 4.923 in the temperature range of 1123 K-1423 K, respectively. Finally, an expression of Z parameter, hot deformation equation and dynamic recrystallization model diagram of the tested steel are established.
Key words:  Nb-B steel      true stress-true strain curve      strain hardening exponent      dynamic recrystallization      activation energy     
Received:  18 April 2010     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2010.00189     OR     https://www.ams.org.cn/EN/Y2011/V47/I1/34

[1] Prasad S N, Mediratta S R, Sarma D S. Mater Sci Eng, 2003; A358: 288

[2] He X L, Shang C J, Yang S W. High–performance Low– carbon Bainitic Steel. Beijing: Metallurgical Industry Press, 2008: 6

(贺信莱, 尚成嘉, 杨善武. 高性能低碳贝氏体钢. 北京: 冶金工业出版社, 2008: 6)

[3] Zhang C L, Cai D Y, Zhao T C. Mater Lett, 2004; 58: 1524

[4] Zhao Y T, Yang S W, Shang C J, Wang X M, Liu W, He X L. Mater Sci Eng, 2007; A454–455: 695

[5] Yang S W, Chen Y S. J Mater Sci Eng, 1994; 12(2): 49

(杨善武, 陈钰珊. 材料科学与工程, 1994; 12(2): 49

[6] Shang C J, Wang X M, He X L. Acta Metall Sin, 2008; 44: 287

(尚成嘉, 王学敏, 贺信莱. 金属学报, 2008; 44: 287)

[7] Monteiro S N, Reed–Hill R E. Metall Trans, 1973; 4: 1011

[8] Crussard C. Rev Metall, 1953; 10: 697

[9] Song R B, Xiang J Y, Hou D P. Acta Metall Sin, 2010; 46: 57

(宋仁伯, 项建英, 侯东坡. 金属学报, 2010; 46: 57)

[10] Liu Y Z, Ren X P, Wang Z D. Material Forming Theory.Beijing: National Defence Industry Press, 2004: 337

(刘雅政, 任学平, 王自东. 材料成形理论基础. 北京: 国防工业出版社, 2004: 337)

[11] Bai D Q, We S, Sun W P, Jonas J J. Metall Trans, 1993; 24A: 2151

[12] Poliak E I, Jonas J J. ISIJ Int, 2003; 43: 684

[13] Abbs N, Jonas J J. ISIJ Int, 2006; 46: 1679

[14] Ryan N D, McQueen H J. Can Metall Q, 1990; 29(2): 147

[15] Mecking H, Kocks U F. Acta Metall, 1981; 29: 1865

[16] Zener C, Hollomon J H. Appl Phys, 1944; 15: 22

[17] Mcqueen H J. Metall Mater Trans, 2002; 22A: 345

[18] Karhausen K, Kopp R. Steel Res, 1992; 63: 249

[19] Sellars C M, Tegart W J M. Mem Sci Rev Met, 1966; 63: 731

[20] Srinivasan N, Prasad Y R K. J Mater Process Technol, 1995; 51: 171

[21] Lan S H, Lee H J, Lee S H, Ni J, Lai X M, Lee H W, Song J H, Lee M G. Mater Des, 2009; 30: 3879
[1] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[2] LOU Feng, LIU Ke, LIU Jinxue, DONG Hanwu, LI Shubo, DU Wenbo. Microstructures and Formability of the As-Rolled Mg- xZn-0.5Er Alloy Sheets at Room Temperature[J]. 金属学报, 2023, 59(11): 1439-1447.
[3] WU Caihong, FENG Di, ZANG Qianhao, FAN Shichun, ZHANG Hao, LEE Yunsoo. Microstructure Evolution and Recrystallization Behavior During Hot Deformation of Spray Formed AlSiCuMg Alloy[J]. 金属学报, 2022, 58(7): 932-942.
[4] REN Shaofei, ZHANG Jianyang, ZHANG Xinfang, SUN Mingyue, XU Bin, CUI Chuanyong. Evolution of Interfacial Microstructure of Ni-Co Base Superalloy During Plastic Deformation Bonding and Its Bonding Mechanism[J]. 金属学报, 2022, 58(2): 129-140.
[5] JIANG Weining, WU Xiaolong, YANG Ping, GU Xinfu, XIE Qingge. Formation of Dynamic Recrystallization Zone and Characteristics of Shear Texture in Surface Layer of Hot-Rolled Silicon Steel[J]. 金属学报, 2022, 58(12): 1545-1556.
[6] NI Ke, YANG Yinhui, CAO Jianchun, WANG Liuhang, LIU Zehui, QIAN Hao. Softening Behavior of 18.7Cr-1.0Ni-5.8Mn-0.2N Low Nickel-Type Duplex Stainless Steel During Hot Compression Deformation Under Large Strain[J]. 金属学报, 2021, 57(2): 224-236.
[7] CHEN Wenxiong, HU Baojia, JIA Chunni, ZHENG Chengwu, LI Dianzhong. Post-Dynamic Softening of Austenite in a Ni-30%Fe Model Alloy After Hot Deformation[J]. 金属学报, 2020, 56(6): 874-884.
[8] ZHANG Yang, SHAO Jianbo, CHEN Tao, LIU Chuming, CHEN Zhiyong. Deformation Mechanism and Dynamic Recrystallization of Mg-5.6Gd-0.8Zn Alloy During Multi-Directional Forging[J]. 金属学报, 2020, 56(5): 723-735.
[9] WU Huajian, CHENG Renshan, LI Jingren, XIE Dongsheng, SONG Kai, PAN Hucheng, QIN Gaowu. Effect of Al Content on Microstructure and Mechanical Properties of Mg-Sn-Ca Alloy[J]. 金属学报, 2020, 56(10): 1423-1432.
[10] ZHANG Yong, LI Xinxu, WEI Kang, WAN Zhipeng, JIA Chonglin, WANG Tao, LI Zhao, SUN Yu, LIANG Hongyan. Hot Deformation Characteristics of Novel Wrought Superalloy GH4975 Extruded Rod Used for 850 ℃ Turbine Disc[J]. 金属学报, 2020, 56(10): 1401-1410.
[11] Xu LI,Qingbo YANG,Xiangze FAN,Yonglin GUO,Lin LIN,Zhiqing ZHANG. Influence of Deformation Parameters on Dynamic Recrystallization of 2195 Al-Li Alloy[J]. 金属学报, 2019, 55(6): 709-719.
[12] Yahui DENG,Yinhui YANG,Jianchun CAO,Hao QIAN. Research on Dynamic Recrystallization Behavior of 23Cr-2.2Ni-6.3Mn-0.26N Low Nickel TypeDuplex Stainless Steel[J]. 金属学报, 2019, 55(4): 445-456.
[13] Xiting ZHONG, Lei WANG, Feng LIU. Study on Formation Mechanism of Necklace Structure in Discontinuous Dynamic Recrystallization of Incoloy 028[J]. 金属学报, 2018, 54(7): 969-980.
[14] Shubo LI, Wenbo DU, Xudong WANG, Ke LIU, Zhaohui WANG. Effect of Zr Addition on the Grain Refinement Mechanism of Mg-Gd-Er Alloys[J]. 金属学报, 2018, 54(6): 911-917.
[15] Yusen SU, Yinhui YANG, Jianchun CAO, Yuliang BAI. Research on Hot Working Behavior of Low-NickelDuplex Stainless Steel 2101[J]. 金属学报, 2018, 54(4): 485-493.
No Suggested Reading articles found!