Please wait a minute...
Acta Metall Sin  2010, Vol. 46 Issue (8): 930-934    DOI: 10.3724/SP.J.1037.2010.00007
论文 Current Issue | Archive | Adv Search |
A STUDY OF MARTENSITIC MORPHOLOGY BY PARALLEL MULTIPLE–LAYERS SECTIONING
LIU Yongning, ZHANG Guiyi, LI Wei
State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049
Cite this article: 

LIU Yongning ZHANG Guiyi LI Wei. A STUDY OF MARTENSITIC MORPHOLOGY BY PARALLEL MULTIPLE–LAYERS SECTIONING. Acta Metall Sin, 2010, 46(8): 930-934.

Download:  PDF(1590KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In metallography the shape of high carbon martensite is commonly considered to be ens–like in three dimensions, which is of needle or bamboo leaf on the OM micrographs of section lanes. However, a round martensite on OM micrographs have never been seen so far. This question as not been answered over the years. It has not been theoretically explanined why is martensite ath–like for low carbon steels and lens–like for high carbon steels on OM micrographs. For answering hese questions, the martensitic morphology of a steel with carbon content 1.37% was observed in the ame view by OM using a method of multiple sectioning of one sample. The length, width of the aimed artensite and sectioned thickness of samples were measured before observing. It is found that the artensite is a flat ellipsoid rather than lens–like as described in traditional textbooks. The ratio of a/b is about 3 and a/c is abot 20 for the martensite ellisoid. The thermal dynamic analyss ndicates hat the nucleation energy for a martenste s closely related to its shape. Ithe austenite with the ame grain size, the nucleation energy (ΔG) of martensite will be lower with ellipsoid shape than with lens shape. The drvng force for martensitic transformation will reduce with the decrease of carbon ontent, resulting n the formation of lath–like martensite in steels with low carbon content.

Key words:  martensitic transformation      high carbon martensie      low carbon martensite      lens      llipsoid     
Received:  05 January 2010     
Fund: 

Supported by National Natural Science Foundation of China (No.50871082)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2010.00007     OR     https://www.ams.org.cn/EN/Y2010/V46/I8/930

[1] Shi D K. the Foundamental of Materials Science, Mechanical Press of China, 1999: 336 (石徳珂, 材料科学基础, 机械工业出版社, 1999: 336) [2] G.B.Olson and U.S.Owen, Martensite, ASM International, The materials Information Society, 1992: 81 [3] Anil Kumar Sinha, Physical Metallurgy Handbook, McGraw-Hill, (2003), 8: 37 [4] Maki T, Mater. Sci. Forum 56-58 (1990): 157-168 [5] Maki T, Shimooka S, Arimoto T, Tamura I. Trans. JIM, 14(1973): 62-67 [6] Shibata, H.Yonezawa, K.Yabuuchi, S.Morito, T.Furuhara, T.Maki. Materials Science and Engineering A 438-440 (2006): 241-245 [7] Davies R G, Magee C L. Mat Trans. 1(1970): 2927-2931 [8] Krauss G, Marder A R. Met.Trans, 2(1972): 2343-2357 [9] Xu Z Y. martensitic transformation and martensite, China Science Press, 1999 (徐祖耀, 马氏体相变与马氏体, 科学出版社, 第二版, (1999)) [10] Verhoeven J D. Fundamentals of Physical Metallurgy. John Wiley &Sons. Inc. (1975): 48 [11] Proter D A and Easterling K E. Phase Transformations in Metal and Alloys. Second Edition, Chapman &Hall, (1992): 382 [12] Morito S, Huang X, Furuhara T, Maki T, Hansen N. Acta Materialia 54(2006): 5323-5331 [13] Liu YJ, Huang BY, Tan YH, Fan SH. J. Iron &Steel Res, Int, 3 (2005): 46-50 [14] Morito S, Nishikawa J, T Maki, ISIJ Int. 43 (2003): 1475-1477 [15] Zhang Z L, Liu Y N, Yu Guang, Zhu J W, He T. Acta Metall Sin, 2009; 3: 280 (张占领, 柳永宁, 于光, 朱杰武, 何涛.金属学报,2009; 3: 280)
[1] JIANG Jiang, HAO Shijie, JIANG Daqiang, GUO Fangmin, REN Yang, CUI Lishan. Quasi-Linear Superelasticity Deformation in an In Situ NiTi-Nb Composite[J]. 金属学报, 2023, 59(11): 1419-1427.
[2] LI Wei, JIA Xingqi, JIN Xuejun. Research Progress of Microstructure Control and Strengthening Mechanism of QPT Process Advanced Steel with High Strength and Toughness[J]. 金属学报, 2022, 58(4): 444-456.
[3] CHEN Wei, CHEN Hongcan, WANG Chenchong, XU Wei, LUO Qun, LI Qian, CHOU Kuochih. Effect of Dilatational Strain Energy of Fe-C-Ni System on Martensitic Transformation[J]. 金属学报, 2022, 58(2): 175-183.
[4] YUAN Jiahua, ZHANG Qiuhong, WANG Jinliang, WANG Lingyu, WANG Chenchong, XU Wei. Synergistic Effect of Magnetic Field and Grain Size on Martensite Nucleation and Variant Selection[J]. 金属学报, 2022, 58(12): 1570-1580.
[5] WANG Jinliang, WANG Chenchong, HUANG Minghao, HU Jun, XU Wei. The Effects and Mechanisms of Pre-Deformation with Low Strain on Temperature-Induced Martensitic Transformation[J]. 金属学报, 2021, 57(5): 575-585.
[6] ZUO Liang, LI Zongbin, YAN Haile, YANG Bo, ZHAO Xiang. Texturation and Functional Behaviors of Polycrystalline Ni-Mn-X Phase Transformation Alloys[J]. 金属学报, 2021, 57(11): 1396-1415.
[7] XIAO Fei, CHEN Hong, JIN Xuejun. Research Progress in Elastocaloric Cooling Effect Basing on Shape Memory Alloy[J]. 金属学报, 2021, 57(1): 29-41.
[8] CHEN Lei , HAO Shuo , MEI Ruixue , JIA Wei , LI Wenquan , GUO Baofeng . Intrinsic Increment of Plasticity Induced by TRIP and Its Dependence on the Annealing Temperature in a Lean Duplex Stainless Steel[J]. 金属学报, 2019, 55(11): 1359-1366.
[9] Lishan CUI, Daqiang JIANG. Progress in High Performance Nanocomposites Based ona Strategy of Strain Matching[J]. 金属学报, 2019, 55(1): 45-58.
[10] Cheng WEI, Changbo KE, Haitao MA, Xinping ZHANG. A Modified Phase Field Model Based on Order Parameter Gradient and Simulation of Martensitic Transformation in Large Scale System[J]. 金属学报, 2018, 54(8): 1204-1214.
[11] Zhaozhao WEI, Xiao MA, Xinping ZHANG. Topological Modelling of the B2-B19' Martensite Transformation Crystallography in NiTi Alloy[J]. 金属学报, 2018, 54(10): 1461-1470.
[12] Jilan YANG, Yuankai JIANG, Jianfeng GU, Zhenghong GUO, Haiyan CHEN. Effect of Austenitization Temperature on the Dry Sliding Wear Properties of a Medium Carbon Quenching and Partitioning Steel[J]. 金属学报, 2018, 54(1): 21-30.
[13] Xue WANG,Lei HU,Dongxu CHEN,Songtao SUN,Liquan LI. Effect of Martensitic Transformation on Stress Evolution in Multi-Pass Butt-Welded 9%Cr Heat-Resistant Steel Pipes[J]. 金属学报, 2017, 53(7): 888-896.
[14] Kejian LI,Zhipeng CAI,Yao WU,Jiluan PAN. Research on Austenite Transformation of FB2 Heat-Resistant Steel During Welding Heating Process[J]. 金属学报, 2017, 53(7): 778-788.
[15] Xiaosong ZHANG,Yong XU,Shihong ZHANG,Ming CHENG,Yonghao ZHAO,Qiaosheng TANG,Yuexia DING. Research on the Collaborative Effect of Plastic Deformation and Solution Treatment in the Intergranular Corrosion Property of Austenite Stainless Steel[J]. 金属学报, 2017, 53(3): 335-344.
No Suggested Reading articles found!