Please wait a minute...
Acta Metall Sin  2010, Vol. 46 Issue (11): 1391-1421    DOI: 10.3724/SP.J.1037.2010.00381
论文 Current Issue | Archive | Adv Search |
RECENT PROGRESS IN THE AREA OF BULK AMORPHOUS ALLOYS AND COMPOSITES
HU Zhuangqi, ZHANG Haifeng
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article: 

HU Zhuangqi ZHANG Haifeng. RECENT PROGRESS IN THE AREA OF BULK AMORPHOUS ALLOYS AND COMPOSITES. Acta Metall Sin, 2010, 46(11): 1391-1421.

Download:  PDF(3716KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Bulk metallic glass (BMG) and its composite (BMGC) are new members in the area of materials science and engineering. In this paper, we simply reviewed the development history, especially introduced our recent progress referred to Ti-, Ni-, Zr- and Mg-based BMGs and BMGCs. The study of the microstructures of BMGs prepared by controlling the solidification conditions indicates that the microstructure of BMG is flexible. Several factors including the casting temperature, the mold temperature and the mold material etc. influencing on the glass formation, microstructures and properties were studied. The relationship among processes, structures and properties of BMGs is furthermore illustrated. Some BMGs and BMGCs were prepared by mediating the solidification conditions and designing the novel composite structures, of which the size of Ti-based BMG reaches 50 mm,\linebreak and crystal/BMG bi-continuous phase composites exhibit good properties. Investigations reveal that the application of these BMG and BMGCs will be expected in the near future.
Key words:  bulk metallic glass      bulk metallic glass matrix composite      solidification controlling     
Received:  29 July 2010     
Fund: 

Supported by National Basic Research Program of China (No.2006CB605201), National Funds for Distinguished Young Scholars (No.50825402) and National Natural Science Foundation of China (No.50731005)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2010.00381     OR     https://www.ams.org.cn/EN/Y2010/V46/I11/1391

[1] Chen H. Rep Prog Phys, 1980; 43: 353 [2] Kelton K F. Solid State Phys, 1991; 45: 75 [3] Johnson W L. MRS Bull, 1999; 24: 42 [4] Inoue A. Acta Mater, 2000; 48: 279 [5] Wang W H, Dong C, Shek C H. Mater Sci Eng, 2004; R44: 45 [6] Eckert J, Das J, Pauly S, Duhamel C. J Mater Res, 2007; 22: 285 [7] Wang W. Adv Mater, 2009; 21: 4524 [8] Schuh C A, Hufnagel T C, Ramamurty U. Acta Mater, 2007; 55: 4067 [9] Wang W H. Prog Mater Sci, 2007; 52: 540 [10] Yavari A R, Lewandowski J J, Eckert J. MRS Bull, 2007; 32: 635 [11] Brothers A H, Dunand D C. MRS Bull, 2008; 32: 639 [12] Busch R, Schroers J, Wang W H. MRS Bull, 2008; 32: 620 [13] Chen M. Annu Rev Mater Res, 2008; 38: 445 [14] Inoue A, Nishiyama N. MRS Bull, 2008; 32: 651 [15] Johnson W L, Demetriou M D, Harmon J S, Lind M L, Samwer K. MRS Bull, 2008; 32: 644 [16] Miracle D B, Egami T, Flores K M, Kelton K F. MRS Bull, 2008; 32: 629 [17] Schroers J. Adv Mater, 2010; 22: 1566 [18] Chu J, Huang J, Jang J, Wang Y, Liaw P. JOM, 2010; 62: 19 [19] Demetriou M, Wiest A, Hofmann D, Johnson W, Han B, Wolfson N, Wang G, Liaw P. JOM, 2010; 62: 83 [20] Egami T. JOM, 2010; 62: 70 [21] Stoica M, Das J, Bednarˇcik J, Wang G, Vaughan G, Wang W, Eckert J. JOM, 2010; 62: 76 [22] Wang G, Liaw P. JOM, 2010; 62: 25 [23] Xu J, Ramamurty U, Ma E. JOM, 2010; 62: 10 [24] Yang Y, Ye J, Lu J, Gao Y, Liaw P. JOM, 2010; 62: 93 [25] Schroers J, Kumar G, Hodges T, Chan S, Kyriakides T. JOM, 2009; 61: 21 [26] Chaudhari P, Turnbull D. Science, 1978; 199: 11 [27] Inoue A, Nishiyama N. Mater Trans JIM, 1997; 38: 464 [28] Takenaka K, Wada T, Nishiyama N, Kimura H, Inoue A. Mater Trans, 2005; 46: 1720 [29] Peker A, Johnson W L. Appl Phys Lett, 1993; 63: 2342 [30] Inoue A, Zhang T. Mater Trans JIM, 1996; 37: 185 [31] Zhang Q, Zhang W, Inoue A. Scr Mater, 2009; 61: 241 [32] Inoue A, Zhang Q S, Zhang W, Yubuta K, Son K S, Wang X M. Mater Trans, 2009; 50: 388 [33] Deng S T, Zhang H F, Wang A M, Li H, Ding B Z, Hu Z Q. J Alloys Compd, 2008; 460: 182 [34] Guo F, Poon S, Shiflet G. Appl Phys Lett, 2003; 83: 2575 [35] Li R, Pang S, Ma C, Zhang T. Acta Mater, 2007; 55: 3719 [36] Jiang Q, Zhang G, Yang L, Wang X, Saksl K, Franz H, Wunderlich R, Fecht H, Jiang J. Acta Mater, 2007; 55: 4409 [37] Ma H, Shi L L, Xu J, Li Y, Ma E. Appl Phys Lett, 2005; 87: 181915 [38] Schroers J, Johnson W. Appl Phys Lett, 2004; 84: 3666 [39] Zeng Y Q, Nishiyama N, Yamamoto T, Inoue A. Mater Trans, 2009; 50: 2441 [40] Zhang Q, Zhang W, Inoue A. Mater Trans, 2007; 48: 629 [41] Zhang W, Zhang Q, Inoue A. J Mater Res, 2008; 23: 1452 [42] Zhang W, Zhang Q, Qin C, Inoue A. Mater Sci Eng, 2008; B148: 92 [43] Zhang Q S, Zhang W, Inoue A. Mater Trans, 2007; 48: 3031 [44] Tang M Q, Zhang H F, Zhu Z W, Fu H M, Wang A M, Li H, Hu Z Q. J Mater Sci Technol, 2010; 26: 481 [45] Tang M Q, Zhang H F, Zhu Z W, Fu H M, Wang A M, Li H, Hu Z. Q. Unpublished results [46] Miracle D B. Nat Mater, 2004; 3: 697 [47] Sheng H W, Cheng Y Q, Lee P L, Shastri S D, Ma E. Acta Mater, 2008; 56: 6264 [48] Cheng Y Q, Ma E, Sheng H W. Phys Rev Lett, 2009; 102: 245501 [49] Ma D, Stoica A D, Wang X L. Nat Mater, 2009; 8: 30 [50] Fujita T, Konno K, Zhang W, Kumar V, Matsuura M, Inoue A, Sakurai T, Chen M W. Phys Rev Lett, 2009; 103: 075502 [51] Inoue A, Zhang W, Tsurui T, Yavari A R, Greer A L. Phil Mag Lett, 2005; 85: 221 [52] Dong W B, Zhang H F, Cai J, Sun W S, Wang A M, Li H, Hu Z Q. J Alloys Compd, 2006; 425: L1 [53] Das J, Tang M B, Kim K B, Theissmann R, Baier F,Wang W H, Eckert J. Phys Rev Lett, 2005; 94: 205501 [54] Liu Y H, Wang G, Wang R J, Zhao D Q, Pan M X, Wang W H. Science, 2007; 315: 1385 [55] Liu Y H, Liu C T, Wang W H, Inoue A, Sakurai T, Chen M W. Phys Rev Lett, 2009; 103: 065504 [56] Shen B, Chang C, Inoue A. Appl Phys Lett, 2006; 88: 201903 [57] Inoue A, Shen B, Koshiba H, Kato H, Yavari A. Acta Mater, 2004; 52: 1631 [58] Guo H, Yan P, Wang Y, Tan J, Zhang Z, Sui M, Ma E. Nat Mater, 2007; 6: 735 [59] Jang D, Greer J R. Nat Mater, 2010; 9: 215 [60] Mao J, Zhang H F, Fu H M, Wang A M, Li H, Hu Z Q. Adv Eng Mater, 2010; 12: 170 [61] Zhu Z W, Zhang H F, Wang H, Ding B Z, Hu Z Q, Huang H. J Mater Res, 2009; 24: 3108 [62] Schroers J, Nguyen T, Croopnick G A. Scr Mater, 2007; 56: 177 [63] Schroers J, Pham Q, Desai A, Technol L, Forest L. J Microelectromech Syst, 2007; 16: 240 [64] Turnbull D, Cohen M H. J Chem Phys, 1958; 29: 1049 [65] Cohen M H, Turnbull D. J Chem Phys, 1959; 31: 1164 [66] Turnbull D. Contemp Phys, 1969; 10: 473 [67] Cohen M, Turnbull D. Nature, 1961; 189: 131 [68] Greer A. Nature, 1993; 366: 303 [69] Lu Z P, Liu C T. Acta Mater, 2002; 50: 3501 [70] Li Y, Guo Q, Kalb J A, Thompson C V. Science, 2008; 322: 1816 [71] Li Y. JOM, 2005; 57: 60 [72] Wang W H. J Appl Phys, 2006; 99: 093506 [73] Liu W Y, Zhang H F, Wang A M, Li H, Hu Z Q. Mater Sci Eng, 2007; A459: 196 [74] Wang Y, Qiang J, Wong C, Shek C, Dong C. J Mater Res, 2003; 18: 642 [75] Dong C, Wang Q, Qiang J B, Wang Y M, Han G, Wu J, Li Y H, Cheng X, Zhu C L, Chen H. J Phys Conf Ser, 2008; 98: 012015 [76] Ostwald W Z. Phys Chem, 1897; 22: 289 [77] Tanaka H. J Chem Phys, 1999; 111: 3163 [78] Tanaka H. J Chem Phys, 1999; 111: 3175 [79] Wang H R, Ye Y F, Min W H, Teng X Y, Qin J Y. Acta Phys–Chim Sin, 2001; 37: 801 (王焕荣, 叶以富, 闵文辉, 滕新营, 秦敬玉. 物理化学学报, 2001; 37: 801) [80] Bian X F,Wang WM, Li H, Ma J J. Metal Melt Structure. Shanghai: Shanghai Jiao Tong University Press, 2003: 59 (边秀房, 王伟民, 李辉, 马家骥. 金属熔体结构. 上海: 上海交通大学出版社, 2003: 59) [81] Qin J Y, Qin X B, Min W W, Bian X F T. Nonferr Metal Soc, 2004; 14: 1068 [82] Bian X, Guo J, Lv X, Qin X, Wang C. Appl Phys Lett, 2007; 91: 221910 [83] Popel P S, Chikova O A, Matveev V M. High Temp Mater Processes, 1995; 14: 219 [84] Saboungi M L, Blomquist R, Volin K J, Price D L. J Chem Phys, 1987; 87: 2278 [85] Simonet V, Hippert F, Audier M, Bellissent R. Phys Rev, 2001; 65B: 024203 [86] Schenk T, Simonet V, Holland–Moritz D, Bellissent R. Europhys Lett, 2004; 65: 34 [87] Li H. J Phys Chem, 2004; 108B: 5438 [88] Tanaka H. J Phys Condens Matter, 2003; 15: L491 [89] Mukherjee S, Schroers J, Johnson W L, Rhim W K. Phys Rev Lett, 2005; 94: 245501 [90] Shen Y T, Kim T H, Gangopadhyay A K, Kelton K F. Phys Rev Lett, 2009; 102: 057801 [91] Xing L, Ochin P. J Mater Sci Lett, 1997; 16: 1277 [92] Popel P S, Calvo–Dahlborg M, Dahlborg U. J Non–Cryst Solids, 2007; 353: 3243 [93] Kui H, Greer A, Turnbull D. Appl Phys Lett, 1984; 45: 615 [94] Tamura T, Amiya K, Rachmat R S, Mizutani Y, Miwa K. Nat Mater, 2005; 4: 289 [95] Tamura T, Kamikihara D, Miwa K. Int J Cast Met Res, 2008; 1: 86 [96] Matsubara E, Tamura T, Waseda Y, Zhang T, Inoue A, Masumoto T. J Non–Cryst Solids, 1992; 150: 380 [97] Matsubara E, Tamura T, Waseda Y, Inoue A, Zhang T, Masumoto T. Mater Trans JIM, 1992; 33: 873 [98] Busch R, Bakke E, Johnson W L. Acta Mater, 1998; 46: 4725 [99] Ramachandrarao P. Prog Mater Sci, 1997; 42: 301 [100] Xu Z Y. Principle of Transformation. Beijing: Science Press, 1988: 472 (徐祖耀. 相变原理. 北京: 科学出版社, 1988: 472) [101] Suzuki T, Toyoda S, Umeda T, Kimura Y. J Cryst Growth, 1977; 38: 123 [102] Li D, Herlach D. Phys Rev Lett, 1996; 77: 1801 [103] Kurz W, Giovanola B, Trivedi R. Acta Metall, 1986; 34: 823 [104] Herlach D. Mater Sci Eng, 1994; R12: 177 [105] Schroers J, Holland–Moritz D, Herlach D, Urban K. Phys Rev, 2000; 61B: 14500 [106] Nagashio K, Kuribayashi K. Acta Mater, 2002; 50: 1973 [107] Nagashio K, Kuribayashi K. Acta Mater, 2001; 49: 1947 [108] Sun W S, Zhang H F, Hu Z Q, Kulik T. J Non–Cryst Solids, 2005; 351: 1696 [109] Sun W S, Zhang H F, Ding B Z, Hu Z Q. J Mater Res, 2004; 19: 2523 [110] Zhu Z W. PhD Thesis, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2009 (朱正旺. 中国科学院金属研究所博士学位论文, 沈阳, 2009) [111] Zhu Z W, Zhang H F, Pan D G, Sun W S, Hu Z Q. Adv Eng Mater, 2006; 8: 953 [112] Zhu Z W, Zhang H F, Ding B Z, Hu Z Q. Mater Sci Eng, 2008; A492: 221 [113] Yamaura S, Sakurai M, Hasegawa M, Wakoh K, Shimpo Y, Nishida M, Kimura H, Matsubara E, Inoue A. Acta Mater, 2005; 53: 3703 [114] Zhu Z W, Zheng S J, Zhang H F, Ding B Z, Hu Z Q, Liaw P K,Wang Y D, Ren Y. J Mater Res, 2008; 23: 941 [115] Zhu Z W, Zhang H F, Hu Z Q, Zhang W, Inoue A. Scr Mater, 2010; 62: 278 [116] Mao J, Zhang H F, Fu H M, Wang A M, Li H, Hu Z Q. Adv Eng Mater, 2009; 11: 986 [117] Laws K, Gun B, Ferry M. Metall Mater Trans, 2009; 40A: 2377 [118] Tournier R F. Physica, 2007; 392B: 79 [119] Lin X H, Johnson W L, Rhim W K. Mater Trans JIM, 1997; 38: 473 [120] Gebert A, Eckert J, Schultz L. Acta Mater, 1998; 46: 5475 [121] Li H X, Gao J E, Jiao Z B, Wu Y, Lu Z P. Appl Phys Lett, 2009; 95: 161905 [122] Altounian Z, Batalla E, Strom–Olsen J, Walter J. J Appl Phys, 1987; 61: 149 [123] Flemings M. Solidification Processing. New York: McGraw–Hill, 1974: 1 [124] Louzguine–Luzgin D V, Setyawan A D, Kato H, Inoue A. Appl Phys Lett, 2006; 88: 251902 [125] Holman J. Heat Transfer. 7th Ed., New York: McGraw– Hill, 1990: 1 [126] Zhu Z W, Zhang H F,Wang H, Ding B Z, Hu Z Q. J Mater Res, 2008; 23: 2714 [127] Mao J, Zhang H F, Fu H M, Wang A M, Li H, Hu Z Q. J Alloys Compd, 2010; 496: 595 [128] Xia M, Zhang S, Li J, Ma C. Appl Phys Lett, 2006; 88: 261913 [129] Kato H, Hirano T, Matsuo A, Kawamura Y, Inoue A. Scr Mater, 2000; 43: 503 [130] Mao J, Zhang H F, Fu H M, Wang A M, Li H, Hu Z Q. Mater Sci Eng, 2010; A527: 981 [131] Qiang J B, Zhang W, Xie G Q, Inoue A. Appl Phys Lett, 2007; 90: 231907 [132] Hofmann D C, Suh J Y, Wiest A, Duan G, Lind M L, Demetriou M D, Johnson W L. Nature, 2008; 451: 1085 [133] Hofmann D C, Suh J Y, Wiest A, Lind M L, Demetriou M D, Johnson W L. PNAS, 2008; 105: 20136 [134] Fan C, Li C, Inoue A,HaasV. Phys Rev, 2000; 61B: R3761 [135] Hajlaoui K, Yavari A R, LeMoulec A, Botta WJ, Vaughan FG, Das J,Greer AL, KvickA. J Non–Cryst Solids, 2007; 353: 327 [136] Wang L, Ma L, Chen M, Kimura H, Inoue A. Mater Sci Eng, 2002; A325: 182 [137] Murali P, Ramamurty U. Acta Mater, 2005; 53: 1467 [138] Kumar G, Rector D, Conner R D, Schroers J. Acta Mater, 2009; 57: 3572 [139] Makino A, Men H, Yubuta K, Kubota T. J Appl Phys, 2009; 105: 013922 [140] Makino A, Men H, Kubota T, Yubuta K, Inoue A. Mater Trans, 2009; 50: 204 [141] Inoue A. Intermetallics, 2000; 8: 455 [142] Guo F, Wang H J, Poon S J, Shiflet G J. Appl Phys Lett, 2005; 86: 091907 [143] Sun Y F, Wei B C, Wang Y R, Li W H, Cheung T L, Shek C H. Appl Phys Lett, 2005; 87: 051905 [144] Zhu Z W, Zhang H F, Sun W S, Ding B Z, Hu Z Q. Scr Mater, 2006; 54: 1145 [145] Calin M, Eckert J, Schultz L. Scr Mater, 2003; 48: 653 [146] Kuhn U, Eckert J, Mattern N, Schultz L. Appl Phys Lett, 2002; 80: 2478 [147] Fan C, Ott R T, Hufnagel T C. Appl Phys Lett, 2002; 81: 1020 [148] Bian Z, Kato H, Qin C, Zhang W, Inoue A. Acta Mater, 2005; 53: 2037 [149] Dong W B, Zhang H F, Sun W S, Wang A M, Li H, Hu Z Q. J Mater Res, 2006; 21: 1490 [150] Hofmann D C, Suh J Y, Wiest A, Johnson W. Scr Mater, 2008; 59: 684 [151] Qiao J W, Wang S, Zhang Y, Liaw P K, Chen G L. Appl Phys Lett, 2009; 94: 151905 [152] Zhang Y, Xu W, Tan H, Li Y. Acta Mater, 2005; 53: 2607 [153] Liu J M, Zhang H F, Fu H M, Hu Z Q, Yuan X G. J Mater Res, 2010; 25: 1160 [154] Liu J M, Zhang H F, Fu H M, Hu Z Q, Yuan X G. Mater Trans, 2010; 51: 1033 [155] Wu Y, Xiao Y, Chen G, Liu C, Lu Z. Adv Mater, 2010; 22: 2770 [156] Pauly S, Das J, Duhamel C, Eckert J. Adv Eng Mater, 2007; 9: 487 [157] Fu H M, Wang H, Zhang H F, Hu Z Q. Scr Mater, 2006; 54: 1961 [158] Fu H M, Zhang H F, Wang H, Zhang Q S, Hu Z Q. Scr Mater, 2005; 52: 669 [159] Mattern N, Goerigk G, Vainio U, Miller M K, Gemming T, Eckert J. Acta Mater, 2009; 57: 903 [160] Park B J, Chang H J, Kim D H, Kim W T, Chattopadhyay K, Abinandanan T A, Bhattacharyya S. Phys Rev Lett, 2006; 96: 245503 [161] Du X H, Huang J C, Hsieh K C, Lai Y H, Chen H M, Jang J S C, Liaw P K. Appl Phys Lett, 2007; 91: 131901 [162] Bae D H, Lee M H, Kim D H, Sordelet D J. Appl Phys Lett, 2003; 83: 2312 [163] Choi–Yim H, Johnson W L. Appl Phys Lett, 1997; 71: 3808 [164] Choi–Yim H, Conner R D, Szuecs F, Johnson W L. Acta Mater, 2002; 50: 2737 [165] Xu Y K, Ma H, Xu J, Ma E. Acta Mater, 2005; 53: 1857 [166] Choi–Yim H, Busch R, Koster U, Johnson W L. Acta Mater, 1999; 47: 2455 [167] Qiao D C, Zhang H F, Li H, Ding B Z, Hu Z Q. Acta Metall Sin, 2003; 39: 1076 (乔东春, 张海峰, 李宏, 丁炳哲, 胡壮麒. 金属学报, 2003; 39: 1076) [168] Xu Q G, Zhang H F, Hu Z Q. Trans Nonferr Met Soc, 2005; 15: 45 [169] Ma G C, Li W, Li H, Zhang H F, Hu Z Q. Acta Metall Sin, 2006; 42: 201 (马广才, 李文, 李 宏, 张海峰, 胡壮麒. 金属学报, 2006; 42: 201) [170] Xu Q G, Qiu K Q, Zhang H F, Hu Z Q. Rare Met Mater Eng, 2007; 36: 813 (徐前刚, 邱克强, 张海峰, 胡壮麒. 稀有金属材料与工程, 2007; 36: 813) [171] Xu Q G, Wu B L, Zhang H F, Hu Z Q. Rare Met, 2007; 26: 213 [172] Liu N, Ma G F, Zhang H F, Li H, Ding B Z, Wang A M, Hu Z Q. Mater Lett, 2008; 62: 3195 [173] Ma G F, Zhang H F, Li H, Hu Z Q. J Alloys Compd, 2008; 462: 343 [174] Ma G F, Zhang H L, Zhang H F, Li H, Hu Z Q. J Alloys Compd, 2008; 464: 248 [175] Liu N, Zhang H F, Li H, Hu Z Q. J Alloys Compd, 2010; 494: 347 [176] Liu N. PhD Thesis. Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2010 (刘 娜. 中国科学院金属研究所博士学位论文, 沈阳, 2010) [177] Pan D G, Zhang H F, Wang A M, Hu Z Q. Appl Phys Lett, 2006; 89: 261904 [178] Pan D G. PhD Thesis. Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2007  (潘大刚. 中国科学院金属研究所博士学位论文, 沈阳, 2007) [179] Fu X L, Li Y, Schuh C A. Scr Mater, 2007; 56: 617 [180] Conner R D, Dandliker R B, Johnson W L. Acta Mater, 1998; 46: 6089 [181] Kim C, Busch R, Masuhr A, Choi–Yim H, Johnson W. Appl Phys Lett, 2001; 79: 1456 [182] Conner R D, Dandliker R B, Scruggs V, Johnson W L. Int J Impact Eng, 2000; 24: 435 [183] Qiu K Q, Wang A M, Zhang H F, Ding B Z, Hu Z Q. Intermetallics, 2002; 10: 1283 [184] Wu X F, Zhang H F, Hu Z Q. Rare Met Mater Eng, 2005; 34: 863 (武晓峰, 张海峰, 胡壮麒. 稀有金属材料与工程, 2005; 34: 863) [185] Zhang H, Liu L Z, Zhang Z F, Qiu K Q, Pan X F, Zhang H F, Wang Z G. J Mater Res, 2006; 21: 1375 [186] Zhang H, Zhang Z F, Wang Z G, Qiu K Q, Zhang H F, Zang Q S. Metall Mater Trans, 2006; 37A: 2459 [187] Zhang H, Zhang Z F, Wang Z G, Qiu K Q, Zhang H F, Zang Q S, Hu Z Q. Mater Sci Eng, 2006; A418: 146 [188] Ma W, Kou H, Chen C, Li J, Chang H, Zhou L, Fu H. Mater Sci Eng, 2008; A486: 308 [189] Zhang H, Zhang Z F, Wang Z G, Zhang H F. Mater Sci Eng, 2008; A483: 164 [190] Zhang H F, Li H, Wang A M, Fu H M, Ding B Z, Hu Z Q. Intermetallics, 2009; 17: 1070 [191] Clarke D. J Am Ceram Soc, 2005; 75: 739 [192] Chen Y L, Wang A M, Zhang H F, Hu Z Q. Int J Mod Phys, 2009; 23B: 1294 [193] Xue Y F, Cai H N, Wang L, Wang F C, Zhang H F. Mater Sci Eng, 2007; A445: 275 [194] Xue Y F, Cai H N, Wang L, Wang F C, Zhang H F. Appl Phys Lett, 2007; 90: 081901 [195] Zhang H F, Wang A M, Li H, Sun W S, Ding B Z, Hu Z Q, Cai H N, Wang L, Li W. J Mater Res, 2006; 21: 1351 [196] Sun Y, Zhang H F, Wang A M, Fu H M, Hu Z Q, Wen C E, Hodgson P D. Appl Phys Lett, 2009; 95: 171910 [197] Sun Y. PhD Thesis. Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2010 (孙羽. 中国科学院金属研究所博士学位论文, 沈阳, 2010) [198] Jang J, Jian S, Li T, Huang J, Tsao C, Liu C. J Alloys Compd, 2009: 290 [199] Jang J S C, Ciou J Y, Hung T H, Huang J C, Du X H. Appl Phys Lett, 2008; 92: 011930 [200] Kinaka M, Kato H, Hasegawa M, Inoue A. Mater Sci Eng, 2008; A494: 299 [201] Ma H, Xu J, Ma E. Appl Phys Lett, 2003; 83: 2793 [202] Hui X, Dong W, Chen G L, Yao K F. Acta Mater, 2007; 55: 907 [203] Li H, Fan C, Tao K, Choo H, Liaw P K. Adv Mater, 2006; 18: 752 [204] Fan C, Liaw P K, Haas V, Wall J J, Choo H, Inoue A, Liu C T. Phys Rev, 2006; 74B: 014205 [205] Fan C, Li H, Kecskes L J, Tao K, Choo H, Liaw P K, Liu C T. Phys Rev Lett, 2006; 96: 145506 [206] Schroers J. Acta Mater, 2008; 56: 471
[1] LI Ning, HUANG Xin. Recent Advances on 3D Printed Bulk Metallic Glasses[J]. 金属学报, 2021, 57(4): 529-541.
[2] Yanchun ZHAO, Hao SUN, Chunling LI, Jianlong JIANG, Ruipeng MAO, Shengzhong KOU, Chunyan LI. High Temperature Deformation Behavior of High Strength and Toughness Ti-Ni Base Bulk Metallic Glass Composites[J]. 金属学报, 2018, 54(12): 1818-1824.
[3] Yuanyuan ZHANG,Xin LIN,Lei WEI,Yongming REN. Crystallization Behavior of Laser Solid Forming of Annealed Zr55Cu30Al10Ni5 Powder[J]. 金属学报, 2017, 53(7): 824-832.
[4] Yufeng ZHENG,Yuanhao WU. Revolutionizing Metallic Biomaterials[J]. 金属学报, 2017, 53(3): 257-297.
[5] YANG Bin, LI Xin, LUO Wendong, LI Yuxiang. EFFECT OF MINOR Sn AND Nb ADDITIONS ON THE THERMAL STABILITY AND COMPRESSIVE PLASTICITY OF Zr-Cu-Fe-Al BULK METALLIC GLASS[J]. 金属学报, 2015, 51(4): 465-472.
[6] Yong SHEN,Jian XU. PREPARATION AND MECHANICAL PROPERTIES OF Zr46.9Cu45.5Al5.6Y2.0 IN SITU BMG COMPOSITES WITH B2-CuZr PHASE[J]. 金属学报, 2015, 51(11): 1407-1415.
[7] MA Guangcai, FU Huameng, WANG Zheng, XU Qingliang, ZHANG Haifeng. STUDY ON FABRICATION AND PROPERTIES OF 304 STAINLESS STEEL CAPILLARY TUBES/Zr53.5Cu26.5Ni5Al12Ag3 BULK METALLIC GLASS COMPOSITES[J]. 金属学报, 2014, 50(9): 1087-1094.
[8] YANG Gaolin, LIN Xin, HU Qiao, SONG Menghua, WANG Zhitai, HUANG Weidong. EFFECT OF SPECIMEN TEMPERATURE ON CRYSTALLIZATION DURING LASER REMELTITNG Zr55Cu30Al10Ni5 BULK METALLIC GLASS[J]. 金属学报, 2013, 49(8): 925-931.
[9] YANG Gaolin, LIN Xin, HU Qiao, ZHANG Ying, WANG Zhitai, LI Peng, HUANG Weidong. CRYSTALLIZATION BEHAVIOR OF ANNEALED Zr55Cu30Al10Ni5 BULK METALLIC GLASS  DURING PULSED LASER REMELTING[J]. 金属学报, 2013, 49(6): 649-657.
[10] MA Guofeng, HE Chunlin, LI Zhengkun, ZHANG Bo, LI Hong, ZHANG Haifeng, HU Zhuangqi. EFFECTS OF THE ADDITION OF Ti OR Al ON THE WETTING BEHAVIORS AND INTERFACIALCHARACTERISTICS OF Zr50Cu50 BULK METALLIC GLASS/W SUBSTRATE[J]. 金属学报, 2013, 29(4): 495-500.
[11] HU Qiang ZENG Xierong QIAN Haixia XIE Shenghui SHENG Hongchao. CORRELATION BETWEEN THE GLASS-FORMING ABILITY AND CHARACTERISTIC FREE VOLUMES OF THE IRON BASE BULK METALLIC GLASSES[J]. 金属学报, 2012, 48(11): 1329-1334.
[12] YUAN Liang QIANG Jianbing PANG Chang WANG Yinmin WANG Qing DONG Chuang. COMPOSITION DESIGN OF Ni–Nb–(Zr, Ta, Ag) TERNARY BULK METALLIC GLASSES BASED ON CLUSTER FORMULA OF Ni–Nb EUTECTIC[J]. 金属学报, 2011, 47(8): 1003-1008.
[13] LIU Tong ZHU Yarong ZHANG Tongwen ZHANG Tao. EFFECTS OF PREANNEALING UNDER PRESSURE ON THE CRYSTALLIZATION BEHAVIOR AND THERMAL STABILITY OF Gd36La20Al24Co20 BULK
METALLIC GLASS
[J]. 金属学报, 2011, 47(4): 502-506.
[14] ZHANG Jianting QIAO Junwei ZHANG Yong. SYNTHESIS OF PLASTIC LIGHTWEIGHT Ti-BASED METALLIC-GLASS-MATRIX COMPOSITES BY BRIDGMAN SOLIDIFICATION[J]. 金属学报, 2011, 47(2): 236-240.
[15] HUANG Caiyun CHEN Qi LIU Lin. FRICTION AND WEAR PROPERTIES OF Ni–FREE Zr–BASED BULK METALLIC GLASSES IN SIMULATED BODY FLUID[J]. 金属学报, 2010, 46(6): 681-686.
No Suggested Reading articles found!