Please wait a minute...
Acta Metall Sin  2018, Vol. 54 Issue (12): 1818-1824    DOI: 10.11900/0412.1961.2018.00256
Orginal Article Current Issue | Archive | Adv Search |
High Temperature Deformation Behavior of High Strength and Toughness Ti-Ni Base Bulk Metallic Glass Composites
Yanchun ZHAO1(), Hao SUN1, Chunling LI1,2, Jianlong JIANG1, Ruipeng MAO1, Shengzhong KOU1, Chunyan LI1
1 State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
2 College of Mechano-Electronic Engineering, Lanzhou University of Technology, Lanzhou 730050, China
Download:  HTML  PDF(3456KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Room-temperature brittleness and strain-softening during deformation of bulk metallic glasses, and limited processability of shape memory alloys have been stumbling blocks for their advanced functional structural applications. To solve the key scientific problems, a new shape memory bulk metallic glass based composite, through the approach using transformation-induced plasticity (TRIP) effect of shape memory alloys to enhance both ductility and work-hardening capability of metallic glasses, and superplasticity of bulk metallic glass in supercooled liquid region to realize near net forming, was developed in this work. And the Ti-Ni base bulk metallic glass composites (BMGCs) rods were prepared by the levitation suspend melting-water cooled Cu mold process. Microstructure, thermal behavior, mechanical properties and high temperature deformation behavior of the alloy were investigated. The results show that the as-cast alloy microstructure consists of amorphous matrix, undercooled austenite and thermally-induced martensite. Besides, the size of the crystal phase precipitated on the amorphous matrix increases from the surface to the inside. The alloy exhibits excellent comprehensive mechanical properties at room temperature. The yield strength, fracture strength and the plastic strain of alloy are up to 1286 MPa, 2256 MPa and 12.2%, respectively. Under compressive loading in the supercooled liquid region, the composite exhibits approximate Newtonian behavior at lower strain rate in higher deformation temperature, and the optimum deformation temperature is T>480 ℃ and the intersection part with supercooled liquid region (SLR). When the temperature is 560 ℃ and the strain rate is 5×10-4 s-1, the stress sensitivity index m and the energy dissipation rate ψ are 0.81 and 0.895, respectively. Furthermore, the volume of activation is quantified to characterize the rheological behavior.

Key words:  bulk metallic glass composite      shape-memory crystalline phase      mechanical behavior      high temperature deformation      rheological property     
Received:  11 June 2018     
ZTFLH:  TG139.8  
Fund: Supported by National Natural Science Foundation of China (No.516601017) and Outstanding Youth Funds of Gansu Province (No.17JR5RA108)

Cite this article: 

Yanchun ZHAO, Hao SUN, Chunling LI, Jianlong JIANG, Ruipeng MAO, Shengzhong KOU, Chunyan LI. High Temperature Deformation Behavior of High Strength and Toughness Ti-Ni Base Bulk Metallic Glass Composites. Acta Metall Sin, 2018, 54(12): 1818-1824.

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2018.00256     OR     https://www.ams.org.cn/EN/Y2018/V54/I12/1818

Fig.1  XRD spectra of as-cast (Ti0.5Ni0.5)80Cu20 sample and fractured sample after loading
Fig.2  TEM (a) and HRTEM (b) images of the as-cast (Ti0.5Ni0.5)80Cu20 sample (Insets show the SAED patterns)
Fig.3  OM images of (Ti0.5Ni0.5)80Cu20 sample at margin (a), transition (b) and center (c)
Fig.4  Engineering stress-strain curve of (Ti0.5Ni0.5)80Cu20 sample at room temperature
Fig.5  DSC curve of the as-cast (Ti0.5Ni0.5)80Cu20 sample at 20 ℃/min (Tg—glass transition temperature, Tx—crystallization temperature, Tm—melting point, Tl—liquids temperature)
Fig.6  Compressive true stress-true strain curves of (Ti0.5Ni0.5)80Cu20 sample tested under various strain rates (ε˙) at different test temperatures
(a) ε˙=5×10-4 s-1 (b) ε˙=1×10-3 s-1 (c) ε˙=5×10-3 s-1 (d) ε˙=1×10-2 s-1
Strain rate / s-1 480 ℃ 520 ℃ 560 ℃
5×10-4 807.1 694.0 490.0
1×10-3 974.2 782.0 579.5
5×10-3 1105.8 894.0 700.0
1×10-2 1177.6 941.0 760.0
Table 1  Peak stresses of (Ti0.5Ni0.5)80Cu20 sample under different deformation conditions (Mpa)
Fig.7  Flow stress(σflow)-strain rate logarithmic curves of (Ti0.5Ni0.5)80Cu20 sample at various temperatures
Strain rate / s-1 480 ℃ 520 ℃ 560 ℃
5×10-4 0.65 0.70 0.81
1×10-3 0.58 0.63 0.69
5×10-3 0.34 0.41 0.51
1×10-2 0.21 0.25 0.30
Table 2  Strain rate sensitivity exponent (m) of (Ti0.5Ni0.5)80Cu20 sample under different deformation conditions
Fig.8  Strain rate dependence of the viscosity of (Ti0.5Ni0.5)80Cu20 sample at various test temperatures
[1] Greer A L.Metallic glasses[J]. Science, 1995, 267: 1947
[2] L?ffler J F.Bulk metallic glasses[J]. Intermetallics, 2003, 11: 529
[3] Schuh C A, Hufnagel T C, Ramamurty U.Mechanical behavior of amorphous alloys[J]. Acta Mater., 2007, 55: 4067
[4] Wang W H.Bulk metallic glasses with functional physical properties[J]. Adv. Mater., 2009, 21: 4524
[5] Schroers J.Processing of bulk metallic glass[J]. Adv. Mater., 2010, 22: 1566
[6] Cao Q P, Liu J W, Yang K J, et al.Effect of pre-existing shear bands on the tensile mechanical properties of a bulk metallic glass[J]. Acta Mater., 2010, 56: 1276
[7] Liu Y H, Wang G, Wang R J, et al.Super plastic bulk metallic glasses at room temperature[J]. Science, 2007, 315: 1385
[8] Chen L Y, Fu Z D, Zhang G Q, et al.New class of plastic bulk metallic glass[J]. Phys. Rev. Lett., 2008, 100: 075501
[9] Hofmann D C, Suh J Y, Wiest A, et al.Designing metallic glass matrix composites with high toughness and tensile ductility[J]. Nature, 2008, 451: 1085
[10] Hofmann D C.Shape memory bulk metallic glass composites[J]. Science, 2010, 329: 1294
[11] Gargarella P, Pauly S, Song K K, et al.Ti-Cu-Ni shape memory bulk metallic glass composites[J]. Acta Mater., 2013, 61: 151
[12] Jiang M Q, Dai L H.On the origin of shear banding instability in metallic glasses[J]. J. Mech. Phys. Solids, 2009, 57: 1267
[13] Sun J F, Huang Y J, Shen J, et al.Superplastic formability of a Zr-Ti-Ni-Cu-Be bulk metallic glass[J]. J. Alloys Compd., 2006, 415: 198
[14] Liu M C, Du X H, Lin I C, et al.Superplastic-like deformation in metallic amorphous/crystalline nanolayered micropillars[J]. Intermetallics, 2012, 30: 30
[15] Yao K F, Ruan F, Yang Y Q, et al.Superductile bulk metallic glass[J]. Appl. Phys. Lett., 2006, 88: 122106
[16] Ferenc J, Erenc-S?dziak T, Kowalczyk M, et al.The supercooled liquid region span of Fe-based bulk metallic glasses[J]. J. Alloys Compd., 2010, 495: 327
[17] Wang Q, Wang D K, Fu T, et al.High temperature homogeneous plastic flow behavior of a Zr based bulk metallic glass matrix composite[J]. J. Alloys Compd., 2010, 495: 50
[18] Bae D H, Lim H K, Kim S H, et al.Mechanical behavior of a bulk Cu-Ti-Zr-Ni-Si-Sn metallic glass forming nano-crystal aggregate bands during deformation in the supercooled liquid region[J]. Acta Mater., 2002, 50: 1749
[19] Guo S F, Chan K C, Chen Q, et al.Tensile plastic deformation of a Zr-based bulk metallic glass composite in the supercooled liquid region[J]. Scr. Mater., 2009, 60: 369
[20] Wu Y, Ma D, Li Q K, et al.Transformation-induced plasticity in bulk metallic glass composites evidenced by in-situ neutron diffraction[J]. Acta Mater., 2017, 124: 478
[21] Wu Y, Bei H, Wang Y L, et al.Deformation-induced spatiotemporal fluctuation, evolution and localization of strain fields in a bulk metallic glass[J]. Int. J. Plast., 2015, 71: 136
[22] Huang Y J, Shen J, Sun Y, et al.High temperature deformation behaviors of Ti40Zr25Ni3Cu12Be20 bulk metallic glass[J]. J. Alloys Compd., 2010, 504(suppl.1): S82
[23] Chen G, Hao Y F, Chen X W, et al.Compressive behaviour of tungsten fibre reinforced Zr-based metallic glass at different strain rates and temperatures[J]. Int. J. Impact Eng., 2017, 106: 110
[24] Cheng S R, Wang C J, Ma M Z, et al.Mechanism for microstructural evolution induced by high temperature deformation in Zr-based bulk metallic glasses[J]. J. Alloys Compd., 2016, 676: 299
[25] Jiang M Q, Wilde G, Dai L H.Origin of stress overshoot in amorphous solids[J]. Mech. Mater., 2015, 81: 72
[26] Kim W J, Ma D S, Jeong H G.Superplastic flow in a Zr65Al10Ni10Cu15 metallic glass crystallized during deformation in a supercooled liquid region[J]. Scr. Mater., 2003, 49: 1067
[27] Nieh T G, Wadsworth J, Liu C T, et al.Plasticity and structural instability in a bulk metallic glass deformed in the supercooled liquid region[J]. Acta Mater., 2001, 49: 2887
[28] Yuan X Y, Chen L Q.Hot deformation at elevated temperature and recrystallization behavior of a high manganese austenitic TWIP steel[J]. Acta Metall. Sin., 2015, 51: 651(袁晓云, 陈礼清. 一种高锰奥氏体TWIP钢的高温热变形与再结晶行为[J]. 金属学报, 2015, 51: 651)
[29] Wang T, Wan Z P, Sun Y, et al.Dynamic softening behavior and microstructure evolution of nickel base superalloy[J]. Acta Metall. Sin., 2018, 54: 84(王涛, 万志鹏, 孙宇等. 镍基变形高温合金动态软化行为与组织演变规律研究[J]. 金属学报, 2018, 54: 84)
[30] Ghidelli M, Idrissi H, Gravier S, et al.Homogeneous flow and size dependent mechanical behavior in highly ductile Zr65Ni35 metallic glass films[J]. Acta Mater., 2017, 131: 246
[31] Liu Q, Xia C, Liu X D.The m-C-δ or m-k-δ relations of superplasticity of Zn-5%Al eutectic alloy[J]. Acta Metall. Sin., 1985, 21: 111(刘勤, 夏锄, 刘晓东. Zn-5%Al合金超塑性的m-C-δ (或m-k-δ)关系[J]. 金属学报, 1985, 21: 111)
[32] Yao Z F, Qiao J C, Pelletier J M, et al.High temperature deformation behaviors of the Zr63.36Cu14.52Ni10.12Al12 bulk metallic glass[J]. J. Mater. Sci., 2016, 51: 4079
[33] Zhang X Y, Yuan Z Z, Feng X L, et al.Homogeneous viscous flow behavior of a Cu-Zr based bulk metallic glass composites[J]. Mater. Sci. Eng., 2015, A620: 352
[34] Kawamura Y, Nakamura T, Inoue A.Superplasticity in Pd40Ni40P20 metallic glass[J]. Scr. Mater., 1998, 39: 301
[35] Spaepen F.A microscopic mechanism for steady state inhomogeneous flow in metallic glasses[J]. Acta Metall., 1977, 25: 407
[36] Cui J, Li J S, Wang J, et al.Deformation behavior of a Ti-based bulk metallic glass composite in the supercooled liquid region[J]. Mater. Des., 2015, 90: 595
[37] Hajlaoui K, Yavari A R, Lemoulec A, et al.Plasticity induced by nanoparticle dispersions in bulk metallic glasses[J]. J. Non-Cryst. Solids, 2007, 353: 327
[38] Inoue A, Fan C, Saida J, et al.High-strength Zr-based bulk amorphous alloys containing nanocrystalline and nanoquasicrystalline particles[J]. Sci. Technol. Adv. Mater., 2000, 1: 73
[1] Aidong TU, Chunyu TENG, Hao WANG, Dongsheng XU, Yun FU, Zhanyong REN, Rui YANG. Molecular Dynamics Simulation of the Structure and Deformation Behavior of γ/α2 Interface in TiAl Alloys[J]. 金属学报, 2019, 55(2): 291-298.
[2] Fei LI,Huayu ZHANG,Wenwu HE,Huiqin CHEN,Huiguang GUO. COMPRESSION AND TENSILE CONSECUTIVE DEFORMATION BEHAVIOR OF Mn18Cr18N AUSTENITE STAINLESS STEEL[J]. 金属学报, 2016, 52(8): 956-964.
[3] Tao JIN,Yizhou ZHOU,Xinguang WANG,Jinlai LIU,Xiaofeng SUN,Zhuangqi HU. RESEARCH PROCESS ON MICROSTRUCTURAL STABILITY AND MECHANICAL BEHAVIOR OF ADVANCED Ni-BASED SINGLE CRYSTAL SUPERALLOYS[J]. 金属学报, 2015, 51(10): 1153-1162.
[4] AN Tong, QIN Fei, WANG Xiaoliang. MICROSTRUCTURE EVOLUTION AND MECHANICAL BEHAVIOR OF INTERMETALLIC COMPOUNDS IN SOLDER JOINT[J]. 金属学报, 2013, 49(9): 1137-1142.
[5] LOU Chao, ZHANG Xiyan, WANG Runhong, DUAN Gaolin, LIU Qing. EFFECTS OF UNTWINNING AND {1012} TWINLAMELLAR STRUCTURE ON THEMECHANICAL PROPERTIESOF Mg ALLOY[J]. 金属学报, 2013, 49(3): 291-296.
[6] YU Lihua, MA Bingyang, XU Junhua. INFLUENCE OF C CONTENT ON STRUCTURE AND MECHANICAL PROPERTIES OF ZrCN COMPOSITE FILMS[J]. 金属学报, 2012, 48(4): 469-474.
[7] JIA Bin PENG Yan. CONSTITUTIVE RELATIONSHIPS OF Nb MICROALLOYED STEEL DURING HIGH TEMPERATURE DEFORMATION[J]. 金属学报, 2011, 47(4): 507-512.
[8] SHEN Kun WANG Mingpu GUO Mingxing LI Shumei . STUDY ON HIGH TEMPERATURE DEFORMATION CHARACTERISTICS OF Cu–0.23%Al2O3 DISPERSION–STRENGTHENED COPPER ALLOY[J]. 金属学报, 2009, 45(5): 597-604.
[9] WANG Shuhan LIU Zhenyu ZHANG Weina WANG Guodong. INVESTIGATIONS ON TEMPERATURE DEPENDENCE OF MECHANICAL PROPERTIES AND THE DEFORMATION MECHANISM OF A TWIP STEEL[J]. 金属学报, 2009, 45(5): 573-578.
[10] Hai-Dong ZHAO; Baicheng LIU. AN ELASTIC-VISCOPLASTIC CONSTITUTIVE MODEL FOR SQUEEZE CASTING ALUMINUM ALLOY[J]. 金属学报, 2008, 44(4): 440-444 .
[11] SUN Jian; FU Yunyi; SHI Rong; SUN Xiaoguang; HU Gengxiang (The Public Laboratory of State Education Commission for High Temperature Materials & High Temperature Tests; Shanghai Jiaotong University; Shanghai 200030). THE HIGH TEMPERATURE TENSILE BEHAVIORS OF Al_(67)Ti_(25)Mn_8 INTERMETALLICS UNDER DIFFERENT STRAIN RATES[J]. 金属学报, 1998, 34(5): 526-530.
[12] GU Yuefeng; LIN Dongliang; SHAN Aidang (The Public Laboratory of State Education Commission for High Temperature Materials and High Temperature Tests; Shanghai Jiaotong University; Shanghai 200030)(CHEN Jiaguang; HU Fan; CAO Hanqing (Shanghai Baoshan Institute of Iron and Steel; Shanghai 201900). MICROSTRUCTURE FEATURES IN DIRECTIONALLY SOLIDIFIED Ni_3Al ALLOY AFTER HIGH TEMPERATURE DEFORMATION[J]. 金属学报, 1998, 34(4): 351-355.
[13] JIANG Dongtao;GUO Jianting;LI Gusong;SHI Changxu (Institute of Metal Research; Chinese Academy of Sciences; Shenyang 110015). ELEVATED TEMPERATURE DEFORMATION BEHAVIOR OF IN SITU MULTIPHASE COMPOSITE (NiAl-28Cr-6Mo)TiC[J]. 金属学报, 1998, 34(11): 1143-1148.
[14] ZHENG Weiwei;YANG Wangyue;LIU Qing;SUN Zuqing(Department of Materials Science and Engineering; University of Science and Technology Beijing; Beijing 100083). ROOM TEMPERATURE MECHANICAL BEHAVIOR OF B2-ORDERED Fe_3Al SINGLE CRYSTALS[J]. 金属学报, 1998, 34(11): 1137-1142.
[15] ZHOU Zhe(Northern Jiaotong University; Beijing 100044); KUANG Zhenbang (Shanghai Jiaotong University); Shanghai 200030). ANALYSIS OF THE ELASTO-PLASTIC PROPERTIES AND COMPUTATIONAL MODELS FOR TWO-PHASE COMPOSITES[J]. 金属学报, 1997, 33(9): 903-911.
No Suggested Reading articles found!