Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (9): 1087-1094    DOI: 10.11900/0412.1961.2014.00187
Current Issue | Archive | Adv Search |
STUDY ON FABRICATION AND PROPERTIES OF 304 STAINLESS STEEL CAPILLARY TUBES/Zr53.5Cu26.5Ni5Al12Ag3 BULK METALLIC GLASS COMPOSITES
MA Guangcai1, FU Huameng1, WANG Zheng2, XU Qingliang3, ZHANG Haifeng1()
1 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
2 Shenyang Kejin Advanced Material Company Limited, Shenyang 110016
3 Petrochina Daqing Petrochemical Company Acrylic Fiber Plant, Daqing 163714
Cite this article: 

MA Guangcai, FU Huameng, WANG Zheng, XU Qingliang, ZHANG Haifeng. STUDY ON FABRICATION AND PROPERTIES OF 304 STAINLESS STEEL CAPILLARY TUBES/Zr53.5Cu26.5Ni5Al12Ag3 BULK METALLIC GLASS COMPOSITES. Acta Metall Sin, 2014, 50(9): 1087-1094.

Download:  HTML  PDF(9961KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Different volume fractions of 304 stainless steel capillary tubes/Zr53.5Cu26.5Ni5Al12Ag3 metallic glass composites were prepared using infiltration method. Their properties and deformation behaviors were investigated systematically. The mechanical properties were performed on materials test machine. Surfaces and fracture morphologies were examined using white light interferometer, X-ray 3D imaging and SEM techniques. The results show that the ductility of composites was improved. The compressive strain of composite reaches 20% when the volume fraction is 34%. The deformation involves obvious work hardening. The amount of work hardening depends on the content of tubes. The composite fails in the shear mode along 45°. The split and debonding of tubes and interfaces act as the propagation way of crack. The amount of shear bands increase as the volume fraction increases. The shear deformation of amorphous in tubes falls behind that out tubes.

Key words:  Zr53.5Cu26.5Ni5Al12Ag3 bulk metallic glass      304 stainless steel capillary tube      shear band      work hardening     
ZTFLH:  TG139.8  
Fund: Supported by National Basic Research Program of China (No.2011CB606301) and Program of “One Hundred Talented People” of The Chinese Academy of Sciences

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2014.00187     OR     https://www.ams.org.cn/EN/Y2014/V50/I9/1087

Fig.1  SEM images of 304 stainless steel capillary tube/Zr53.5Cu26.5Ni5Al12Ag3 amorphous composites with different volume fractions of 304 stainless steel capillary tube
Fig.2  Quasistatic compressive stress-strain curves of the 304 stainless steel capillary tube/Zr53.5Cu26.5Ni5Al12Ag3 amorphous composites under room temperature (BMG—bulk metallic glass, arrow shows the division of I and II)
Material Vf / % Rmc / MPa Rpc0.2 / MPa ec / %
BMG - 1911 - -
BMG/steel 34 1831±18 696±7 20±2
BMG/steel 30 1619±16 723±7 15±2
BMG/steel 24 1582±25 996±9 11±3
BMG/steel 18 1831±18 1037±10 10±3
Table 1  Mechanical properties of Zr53.5Cu26.5Ni5Al12Ag3 bulk metallic glass, 304 stainless steel capillary tube/Zr53.5Cu26.5Ni5Al12Ag3 amorphous composites
Fig.3  SEM images of the 304 stainless steel capillary tube/Zr53.5Cu26.5Ni5Al12Ag3 amorphous composites after deformation
Fig.4  SEM images of side surface of stainless steel capillary tube/Zr53.5Cu26.5Ni5Al12Ag3 amorphous composites containing 34% (a), 30% (b), 24% (c) and 18% (d) capillary tubes after compressive strain of 5% at room temperature
Fig.5  SEM images of side surfaces (left) and the corresponding schematics (right) of the 304 stainless steel capillary tube/Zr53.5Cu26.5Ni5Al12Ag3 amorphous composites after compressive strains of 0 (a) , 5% (b), 10% (c) and fractured (d)
Fig.6  SEM images of fracture surfaces of the 304 stainless steel capillary tube/Zr53.5Cu26.5Ni5Al12Ag3 amorphous composite containing 34% capillary tube
[1] Ashby M F, Greer A L. Scr Mater, 2006; 54: 3216
[2] Gilbert C T, Ritchie R O, Johnson W L. Appl Phys Lett, 1997; 71: 476
[3] Suzuki K, Kataoka N, Inoue A. Mater Trans JIM, 1990; 31: 743
[4] Inoue A, Zhang T, Masumoto T. Mater Trans JIM, 1995; 36: 391
[5] Deng S T, Zhang H F, Wang A M, Li H, Ding B Z, Hu Z Q. J Alloys Compd, 2008; 406: 182
[6] Inoue A, Takeuchi A. Acta Mater, 2011; 59: 2243
[7] Lottler J. Intermetallics, 2003; 11: 529
[8] Szuecs F, Kim C P, Johnson W L. Acta Mater, 2001; 49: 1507
[9] Zhang B, Zhao D Q, Pan M X. Phys Rev Lett, 2005; 94: 205502
[10] Johnson W L. Appl Phys Lett, 1999; 24: 42
[11] Zhu Z W. PhD Dissertation, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2009
(朱正旺. 中国科学院金属研究所博士学位论文, 沈阳, 2009)
[12] Zhu Z W, Zhang H F, Hu Z Q, Zhang W, Inoue A. Scr Mater, 2010; 62: 278
[13] Kuhn U, Eckert J, Mattern N, Schultz L. Appl Phys Lett, 2002; 80: 2478
[14] Fan C, Ott R T, Hufnagel T C. Appl Phys Lett, 2002; 81: 1020
[15] Bian Z, Kato H, Qin C, Zhang W, Inoue A. Acta Mater, 2005; 53: 2037
[16] Dong W B, Zhang H F, Sun W S, Wang A M, Li H, Hu Z Q. J Mater Res, 2006; 21: 1490
[17] Hui X, Dong W, Chen G L. Acta Mater, 2007; 55: 907
[18] Hofmann D C, Suh J Y, Wiest A. Nature, 2008; 451: 1085
[19] Dandliker R B. PhD Dissertation, California Institute of Technology, Pasadena, 1998
[20] Fan C, Li L, Kelskes J, Liu C T. Phys Rev Lett, 2006; 96: 145506
[21] Kim C P. PhD Dissertation, California Institute of Technology, Pasadena, 2001
[22] Conner R D. PhD Dissertation, California Institute of Technology, Pasadena, 1998
[23] Lee S Y. PhD Dissertation, California Institute of Technology, Pasadena, 2007
[24] Mathaudhu S N. PhD Dissertation, Texas A&M University, College station, 2006
[25] Wang G. PhD Dissertation, The University of Tennessee, Knoxiville, 2006
[26] Hofmann D C. PhD Dissertation, California Institute of Technology, Pasadena, 2009
[27] Chen L Y, Fu Z D, Zhang G Q, Hao X P, Jiang Q K, Wang X D, Cao Q P. Phys Rev Lett, 2008; 100: 075501
[28] Deng S T, Diao H, Chen Y L. Scr Mater, 2011; 64: 85
[29] Deng S T. PhD Dissertation, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2010
(邓胜涛. 中国科学院金属研究所博士学位论文, 沈阳, 2010)
[30] Sun Y, PhD Dissertation, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2010
(孙 羽. 中国科学院金属研究所博士学位论文, 沈阳, 2010)
[31] Zheng Q, Cheng S, Strader J H, Ma E, Xu J. Scr Mater, 2007; 56: 161
[32] Park E S, Lee J Y, Kim D H, Gebert A, Schultz L. J Appl Phys, 2008; 104: 023520
[33] Lee C J, Huang J C, Nieh T G. Appl Phys Lett, 2007; 91: 161963
[1] REN Ping, CHEN Xingpin, WANG Cunyu, YU Feng, CAO Wenquan. Effects of Pre-Strain and Two-Step Aging on Microstructure and Mechanical Properties of Fe-30Mn-11Al-1.2C Austenitic Low-Density Steel[J]. 金属学报, 2022, 58(6): 771-780.
[2] SHEN Guohui, HU Bin, YANG Zhanbing, LUO Haiwen. Influence of Tempering Temperature on Mechanical Properties and Microstructures of High-Al-Contained Medium Mn Steel Having δ-Ferrite[J]. 金属学报, 2022, 58(2): 165-174.
[3] CHEN Wei, ZHANG Huan, MU Juan, ZHU Zhengwang, ZHANG Haifeng, WANG Yandong. Effects of Microstructure and Strain Rate on Dynamic Mechanical Properties and Adiabatic Shear Band of TC4 Alloy[J]. 金属学报, 2022, 58(10): 1271-1280.
[4] QU Ruitao, WANG Xiaodi, WU Shaojie, ZHANG Zhefeng. Research Progress in Shear Banding Deformation and Fracture Mechanisms of Metallic Glasses[J]. 金属学报, 2021, 57(4): 453-472.
[5] JIANG Minqiang, GAO Yang. Structural Rejuvenation of Metallic Glasses and Its Effect on Mechanical Behaviors[J]. 金属学报, 2021, 57(4): 425-438.
[6] WANG Shihong,LI Jian,GE Xin,CHAI Feng,LUO Xiaobing,YANG Caifu,SU Hang. Microstructural Evolution and Work Hardening Behavior of Fe-19Mn Alloy Containing Duplex Austenite and ε-Martensite[J]. 金属学报, 2020, 56(3): 311-320.
[7] Jialin ZHU,Shifeng LIU,Yu CAO,Yahui LIU,Chao DENG,Qing LIU. Effect of Cross Rolling Cycle on the Deformed and Recrystallized Gradient in High-Purity Tantalum Plate[J]. 金属学报, 2019, 55(8): 1019-1033.
[8] Haifeng ZHANG, Haile YAN, Nan JIA, Jianfeng JIN, Xiang ZHAO. Exploring Plastic Deformation Mechanism of MultilayeredCu/Ti Composites by Using Molecular Dynamics Modeling[J]. 金属学报, 2018, 54(9): 1333-1342.
[9] Hui XING, Mingxing GUO, Xiaofeng WANG, Yan ZHANG, Jishan ZHANG, Linzhong ZHUANG. EFFECT OF Fe-RICH PHASE PARTICLES WITH DIFFER-ENT CONCENTRATIONS ON THE BENDABILITYOF Al-Mg-Si-Cu SERIES ALLOYS[J]. 金属学报, 2016, 52(3): 271-280.
[10] Xiaogang WANG,Chao JIANG,Xu HAN. PLASTIC STRAIN HETEROGENEITY AND WORK HARDENING OF Ni SINGLE CRYSTALS[J]. 金属学报, 2015, 51(12): 1457-1464.
[11] DENG Dean, KIYOSHIMA Shoichi. INFLUENCE OF ANNEALING TEMPERATURE ON CALCULATION ACCURACY OF WELDING RESIDUAL STRESS IN A SUS304 STAINLESS STEEL JOINT[J]. 金属学报, 2014, 50(5): 626-632.
[12] SUN Xiurong, WANG Huizhen, YANG Ping, MAO Weimin. MECHANICAL BEHAVIORS AND MICRO-SHEAR STRUCTURES OF METALS WITH DIFFERENT STRUCTURES BY HIGH-SPEED COMPRESSION[J]. 金属学报, 2014, 50(4): 387-394.
[13] MO Yongda, JIANG Yanbin, LIU Xinhua, XIE Jianxin. MECHANICAL PROPERTIES AND WORK HARDENING BEHAVIOR OF COLUMNAR-GRAINED HAl77-2 BRASS[J]. 金属学报, 2014, 50(11): 1367-1376.
[14] ZHAO Zhengzhi, TONG Tingting, ZHAO Aimin, HE Qing, DONG Rui, ZHAO Fuqing. MICROSTRUCTURE, MECHANICAL PROPERTIES AND WORK HARDENING BEHAVIOR OF 1300 MPa GRADE 0.14C-2.72Mn-1.3Si STEEL[J]. 金属学报, 2014, 50(10): 1153-1162.
[15] REN Yongqiang, XIE Zhenjia, ZHANG Hongwei, YUAN Shengfu, SONG Tingting, SHANG Chengjia. EFFECT OF PRECURSOR MICROSTRUCTURE ON MORPHOLOGY FEATURE AND MECHANICAL PROPERTY OF C—Mn—Si STEEL[J]. 金属学报, 2013, 49(12): 1558-1566.
No Suggested Reading articles found!