Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (8): 925-931    DOI: 10.3724/SP.J.1037.2013.00166
Current Issue | Archive | Adv Search |
EFFECT OF SPECIMEN TEMPERATURE ON CRYSTALLIZATION DURING LASER REMELTITNG Zr55Cu30Al10Ni5 BULK METALLIC GLASS
YANG Gaolin, LIN Xin, HU Qiao, SONG Menghua, WANG Zhitai, HUANG Weidong
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072
Cite this article: 

YANG Gaolin, LIN Xin, HU Qiao, SONG Menghua, WANG Zhitai, HUANG Weidong. EFFECT OF SPECIMEN TEMPERATURE ON CRYSTALLIZATION DURING LASER REMELTITNG Zr55Cu30Al10Ni5 BULK METALLIC GLASS. Acta Metall Sin, 2013, 49(8): 925-931.

Download:  PDF(735KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Zr55Cu30Al10Ni5 bulk metallic glasses were remelted by pulsed laser at liquid N (Ar) cooling, room temperature and 473 K. The results show that the effect of specimen temperatures on the crystallization of specimens during laser remelting metallic glasses depends on the Ar blowing. If there is no Ar blowing, the crystallization of the specimen during laser remelting under liquid Ar cooling and room temperature is similar while the molten pool is deeper for liquid Ar cooling. And the specimen remelted at 473 K was most seriously crystallized with the deepest molten pool. But comparing the specimen at room temperature, the crystallization of the specimen at liquid N was suppressed during laser remelting with Ar blowing. The effects of specimen temperatures on the crystallization of metallic glasses during laser remelting are: First, the lower specimen temperature can increase the cooling rate of specimen and therefore reduce its crystallization. Secondly, the lower specimentemperature makes  the atmosphere around the specimen cooled down, reduces the shielding effect of plasma and increases the actual laser energy input into the specimen, resulting in more serious crystallization of the specimen. If there is Ar blowing, the atmosphere temperatures are similar to that at the liquid Ar cooling leading to the crystallization of the specimen to reduced. If there is no Ar blowing, the atmosphere temperature is similar to the temperature of specimen itself. In this case, the crystallization of the specimens is jointly determined by the temperature of the specimen itself and the atmosphere temperature around the specimens, which is not monotonous.

Key words:  Zr55Cu30Al10Ni5 bulk metallic glass      specimen temperature      laser remelt      crystallization     
Received:  07 April 2013     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00166     OR     https://www.ams.org.cn/EN/Y2013/V49/I8/925

[1] Wang C, Zhang Q S, Jiang F, Zhang H F, Hu Z Q.  Acta Metall Sin, 2002; 38: 765
(王成, 张庆生, 江峰, 张海峰, 胡壮麒. 金属学报, 2002; 38: 765)
[2] Inoue A, Takeuchi A.  Acta Mater, 2011; 59: 2243
[3] Byrne C, Eldrup M.  Science, 2008; 321: 502
[4] Kumagai N, Samata Y, Kawashima A, Asami K, Hashimoto K.  J Non-Cryst Solids, 1987; 93: 78
[5] Kim J H, Lee C, Lee D M, Sun J H, Shin S Y, Bae J C.  Mater Sci Eng, 2007; A449-451: 872
[6] Chen B, Pang S, Han P, Li Y, Yavari A R, Vaughan G, Zhang T.  J Alloys Compd, 2010; 504: S45
[7] Yue T M, Su Y P, Yang H O.  Mater Lett, 2007; 61: 209
[8] Yang G L, Lin X, Liu F C, Hu Q, Ma L, Li J F, Wei D H.  Intermetallics, 2012; 22: 110
[9] Lin X, Yang H O, Chen J, Huang W D.  Acta Metall Sin, 2006; 42: 361
(林鑫, 杨海欧, 陈静, 黄卫东. 金属学报, 2006; 42: 361
[10] Cao J, Liu F C, Lin X, Huang C P, Chen J, Huang W D.  Opt Laser Technol, 2013; 45: 228
[11] Liu F C, Lin X, Huang C P, Song M H, Yang G L, Chen J, Huang W D.  J Alloys Compd,2011; 509: 4505
[12] Cervo R, Ferro P, Tiziani A, Zucchi F.  J Mater Sci, 2010; 45: 4378
[13] Liu F C, Lin X, Yang G L, Song M H, Chen J, Huang W D.  Opt Laser Technol, 2011; 43: 208
[14] Jia W P, Chen J, Lin X, Zhong C W, Huang W D.  Acta Metall Sin, 2007; 43: 546
(贾文鹏, 陈静, 林鑫, 钟诚文, 黄卫东. 金属学报, 2007; 43: 546)
[15] Liu F C, Lin X, Yang G L, Huang C P, Chen J, Huang W D.  Acta Metall Sin, 2010; 46: 1047
(刘奋成, 林鑫, 杨高林, 黄春平, 陈静, 黄卫东. 金属学报, 2010; 46: 1047)
[16] Laeng J, Stewart J G, Liou F W.  Int J Prod Res, 2000; 38: 3973
[17] Sun H, Flores K M.  Metall Mater Trans, 2010; 41A: 1752
[18] Zheng B, Zhou Y, Smugeresky J E, Lavernia E J.  Metall Mater Trans, 2009; 40A: 2009
[19] Wang H S, Chen H G, Jang J S C, Chiou M S.  Mater Sci Eng, 2010; A528: 338
[20] Yamasaki M, Kagao S, Kawamura Y.  Scr Mater, 2005; 53: 63
[21] Hu Q, Lin X, Yang G L, Huang W D, Li J F.  Acta Metall Sin, 2012; 48: 1467
(胡桥, 林鑫, 杨高林, 黄卫东, 李金富. 金属学报, 2012; 48: 1467)
[22] Xing D W, Shen J, Zhang L F, Sun J F, Wang X D, Wang H.  J Alloys Compd, 2009; 481: 531
[23] Zheng Q G, Gu J H.  Interaction between Laser and Matter. Wuhan: Huazhong
University of Science and Technology Press, 1996: 129
(郑启光, 辜建辉. 激光与物质相互作用. 武汉: 华中理工大学出版社, 1996: 129)
[24] Kuo T Y, Lin Y D.  Mater Trans, 2007; 48: 219
[25] Shao D, Hu B, Zheng Q G.  Advanced Laser Manufacturing Technology and
Device Integration. Beijing: Science Press, 2009: 44
(邵丹, 胡兵, 郑启光. 激光先进制造技术与设备集成. 北京: 科学出版社, 2009: 44)

[1] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[2] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
[3] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[4] LOU Feng, LIU Ke, LIU Jinxue, DONG Hanwu, LI Shubo, DU Wenbo. Microstructures and Formability of the As-Rolled Mg- xZn-0.5Er Alloy Sheets at Room Temperature[J]. 金属学报, 2023, 59(11): 1439-1447.
[5] WU Caihong, FENG Di, ZANG Qianhao, FAN Shichun, ZHANG Hao, LEE Yunsoo. Microstructure Evolution and Recrystallization Behavior During Hot Deformation of Spray Formed AlSiCuMg Alloy[J]. 金属学报, 2022, 58(7): 932-942.
[6] GUO Lu, ZHU Qianke, CHEN Zhe, ZHANG Kewei, JIANG Yong. Non-Isothermal Crystallization Kinetics of Fe76Ga5Ge5B6P7Cu1 Alloy[J]. 金属学报, 2022, 58(6): 799-806.
[7] LI Jinfu, LI Wei. Structure and Glass-Forming Ability of Al-Based Amorphous Alloys[J]. 金属学报, 2022, 58(4): 457-472.
[8] REN Shaofei, ZHANG Jianyang, ZHANG Xinfang, SUN Mingyue, XU Bin, CUI Chuanyong. Evolution of Interfacial Microstructure of Ni-Co Base Superalloy During Plastic Deformation Bonding and Its Bonding Mechanism[J]. 金属学报, 2022, 58(2): 129-140.
[9] ZHANG Jinyong, ZHAO Congcong, WU Yijin, CHEN Changjiu, CHEN Zheng, SHEN Baolong. Structural Characteristic and Crystallization Behavior of the (Fe0.33Co0.33Ni0.33)84 -x Cr8Mn8B x High-Entropy-Amorphous Alloy Ribbons[J]. 金属学报, 2022, 58(2): 215-224.
[10] JIANG Weining, WU Xiaolong, YANG Ping, GU Xinfu, XIE Qingge. Formation of Dynamic Recrystallization Zone and Characteristics of Shear Texture in Surface Layer of Hot-Rolled Silicon Steel[J]. 金属学报, 2022, 58(12): 1545-1556.
[11] HU Chen, PAN Shuai, HUANG Mingxin. Strong and Tough Heterogeneous TWIP Steel Fabricated by Warm Rolling[J]. 金属学报, 2022, 58(11): 1519-1526.
[12] HAN Luhui, KE Haibo, ZHANG Pei, SANG Ge, HUANG Huogen. Kinetic Crystallization Behavior of Amorphous U60Fe27.5Al12.5 Alloy[J]. 金属学报, 2022, 58(10): 1316-1324.
[13] JIANG Jufu, ZHANG Yihao, LIU Yingze, WANG Ying, XIAO Guanfei, ZHANG Ying. Research on AlSi7Mg Alloy Semi-Solid Billet Fabricated by RAP[J]. 金属学报, 2021, 57(6): 703-716.
[14] LI Yanmo, GUO Xiaohui, CHEN Bin, LI Peiyue, GUO Qianying, DING Ran, YU Liming, SU Yu, LI Wenya. Microstructure and Mechanical Properties of Linear Friction Welding Joint of GH4169 Alloy/S31042 Steel[J]. 金属学报, 2021, 57(3): 363-374.
[15] NI Ke, YANG Yinhui, CAO Jianchun, WANG Liuhang, LIU Zehui, QIAN Hao. Softening Behavior of 18.7Cr-1.0Ni-5.8Mn-0.2N Low Nickel-Type Duplex Stainless Steel During Hot Compression Deformation Under Large Strain[J]. 金属学报, 2021, 57(2): 224-236.
No Suggested Reading articles found!