Please wait a minute...
Acta Metall Sin  2010, Vol. 46 Issue (1): 27-33    DOI:
论文 Current Issue | Archive | Adv Search |
EFFECTS OF ROTARY-DIE ECAP ROUTES ON MICROSTRUCTURE AND MECHANICAL PROPERTY OF AZ31 MAGNESIUM ALLOY
YAN Kai 1; SUN Yangshan 1;2;  BAI Jing 1;2;  XUE Feng1;2
1) College of Materials Science and Engineering; Southeast University; Nanjing 211189
2) Jiangsu Key Lab of Advanced Metallic Materials; Nanjing 211189
Cite this article: 

YAN Kai SUN Yangshan BAI Jing XUE Feng. EFFECTS OF ROTARY-DIE ECAP ROUTES ON MICROSTRUCTURE AND MECHANICAL PROPERTY OF AZ31 MAGNESIUM ALLOY. Acta Metall Sin, 2010, 46(1): 27-33.

Download:  PDF(1364KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Using a 3D rotary-die equal-channel angular pressing (3D-RD ECAP) mold, the commercial wrought magnesium alloy AZ31 has been processed through 4 routes(A', BA', BC' and C') and microstructures as well as mechanical properties of the samples processed were investigated. The results reveal that all the 4 routes can refine microstructures of the alloy, however, the effects on microstructural homogeneity and tensile elongations of the samples are different. The grain sizes of the samples processed through routes A' or BA' are more uniform and their tensile elongations at ambient temperature are also higher than those through BC' or C' routes. The distributions of hardness on the central longitudinal planes of samples extruded through different routes are well consistent with the microstructural characters at the corresponding positions. Strain analysis on the cubic elements in the samples reveals the limitation of the traditional shear mode for ECAP. Based on experimental results and finite element method (FEM) simulation, the deformation homogeneity caused by ECAP processing is closely related to the alternative action of tensile and compressive stresses at the different positions in the samples and is independent of the deformation regularity of the cubic elements in the shear model proposed in the previous studies.

Key words:  magnesium alloy      equal-channel angular pressing      rotary-die      pressing route      structure homogeneity      grain-refinement     
Received:  30 June 2009     
ZTFLH:  TG146.2  
Fund: 

Supported by National Key Technology R&D Program (No.2006BAE04B07)

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2010/V46/I1/27

[1] Miyahara Y, Horita Z, Langdon T G. Mater Sci Eng, 2006; A420: 240

[2] Chuvil’deev V N, Nieh T G, Gryaznov M Y, Kopylov V I, Sysoev A N. J Alloy Compd, 2004; 378: 253

[3] Mabuchi M, Iwasaki H, Yanase K. Higashi K. Scr Mater, 1997; 36: 681

[4] Figueiredo R B, Langdon T G. Mater Sci Eng, 2006; A430: 151

[5] Chuvil’deev V N, Kopylov V I, Gryaznov M Y, Sysoev A N. Dokl Phys, 2003; 48: 343

[6] Lapovok R, Thomson P F, Cottam R, Estrin Y. Mater Sci Eng, 2005; A410–411: 390

[7] Kim J C, Nishida Y, Arima H, Ando T. Mater Lett, 2003; 57: 1689

[8] Nishida Y, Arima H, Kim J C, Ando T. Scr Mater, 2001; 45: 261

[9] Yamashita A, Horita Z, Langdon T G. Mater Sci Eng, 2001; A300: 142

[10] Matsubara K, Miyahara Y, Horita Z, Langdon T G. Acta Mater, 2003; 51: 3073

[11] Fatemi–Varzaneh S M, Zarei–Hanzaki A, Beladi H. Mater Sci Eng, 2007; A456: 52

[12] Li Y Y, Zhang D T, Chen W P, Liu Y, Guo G W. J Mater Sci, 2004; 39: 3759

[13] Chino Y, Kimura K, Hakamada M, Mabuchi M. Mater Sci Eng, 2008; A485: 311

[14] Jiang L, Jonas J J. Scr Mater, 2008; 58: 803

[15] Lee B H, Reddya N S, Yeoma J T, Lee C S. J Mater Process Technol, 2007; 187–188: 766

[16] Figueiredo R B, Aguilar M T P, Cetlin P R. Mater Sci Eng, 2006; A430: 179

[17] Chen Z H. Wrought Magnesium Alloys. Beijing: Chemical Industry Press, 2005: 28

(陈振华. 变形镁合金. 北京: 化学工业出版社,2005: 28)

[18] Kim W J, Hong S I, Kim Y S, Min S H, Jeong H T, Lee J D. Acta Mater, 2003; 51: 3293

[19] Beyerlein I J, T´oth L S. Prog Mater Sci, 2009; 54: 427

[20] Valiev R Z, Islamgaliev R K, Alexandrov I V. Prog Mater Sci, 2000; 45: 103

[21] Iwahashi Y, Horita Z, Nemoto M, Langdon T G. Acta Mater, 1998; 46: 3317

[22] Langdon T G, Furukawa M, Nemoto M, Horita Z. JOM, 2000; 52(4): 30

[23] Valiev R Z, Langdon T G. Prog Mater Sci, 2006; 51: 881

[24] Chino Y, Kimura K, Mabuchi M. Mater Sci Eng, 2008; A486: 481

[1] SHAO Xiaohong, PENG Zhenzhen, JIN Qianqian, MA Xiuliang. Unravelling the {101¯2} Twin Intersection Between LPSO Structure/SFs in Magnesium Alloy[J]. 金属学报, 2023, 59(4): 556-566.
[2] ZHU Yunpeng, QIN Jiayu, WANG Jinhui, MA Hongbin, JIN Peipeng, LI Peijie. Microstructure and Properties of AZ61 Ultra-Fine Grained Magnesium Alloy Prepared by Mechanical Milling and Powder Metallurgy Processing[J]. 金属学报, 2023, 59(2): 257-266.
[3] TANG Weineng, MO Ning, HOU Juan. Research Progress of Additively Manufactured Magnesium Alloys: A Review[J]. 金属学报, 2023, 59(2): 205-225.
[4] CHEN Yang, MAO Pingli, LIU Zheng, WANG Zhi, CAO Gengsheng. Detwinning Behaviors and Dynamic Mechanical Properties of Precompressed AZ31 Magnesium Alloy Subjected to High Strain Rates Impact[J]. 金属学报, 2022, 58(5): 660-672.
[5] ZENG Xiaoqin, WANG Jie, YING Tao, DING Wenjiang. Recent Progress on Thermal Conductivity of Magnesium and Its Alloys[J]. 金属学报, 2022, 58(4): 400-411.
[6] LI Shaojie, JIN Jianfeng, SONG Yuhao, WANG Mingtao, TANG Shuai, ZONG Yaping, QIN Gaowu. Multimodal Microstructure of Mg-Gd-Y Alloy Through an Integrated Simulation of Process-Structure-Property[J]. 金属学报, 2022, 58(1): 114-128.
[7] WANG Huiyuan, XIA Nan, BU Ruyu, WANG Cheng, ZHA Min, YANG Zhizheng. Current Research and Future Prospect on Low-Alloyed High-Performance Wrought Magnesium Alloys[J]. 金属学报, 2021, 57(11): 1429-1437.
[8] PAN Fusheng, JIANG Bin. Development and Application of Plastic Processing Technologies of Magnesium Alloys[J]. 金属学报, 2021, 57(11): 1362-1379.
[9] WANG Xuemei, YIN Zhengzheng, YU Xiaotong, ZOU Yuhong, ZENG Rongchang. Comparison of Corrosion Resistance of Phenylalanine, Methionine, and Asparagine-Induced Ca-P Coatings on AZ31 Magnesium Alloys[J]. 金属学报, 2021, 57(10): 1258-1271.
[10] ZHANG Yang, SHAO Jianbo, CHEN Tao, LIU Chuming, CHEN Zhiyong. Deformation Mechanism and Dynamic Recrystallization of Mg-5.6Gd-0.8Zn Alloy During Multi-Directional Forging[J]. 金属学报, 2020, 56(5): 723-735.
[11] Rongchang ZENG, Lanyue CUI, Wei KE. Biomedical Magnesium Alloys: Composition, Microstructure and Corrosion[J]. 金属学报, 2018, 54(9): 1215-1235.
[12] Yanyu LIU, Pingli MAO, Zheng LIU, Feng WANG, Zhi WANG. Theoretical Calculation of Schmid Factor and Its Application Under High Strain Rate Deformation in Magnesium Alloys[J]. 金属学报, 2018, 54(6): 950-958.
[13] Guohua WU, Yushi CHEN, Wenjiang DING. Current Research and Future Prospect on Microstructures Controlling of High Performance Magnesium Alloys During Solidification[J]. 金属学报, 2018, 54(5): 637-646.
[14] Xudong LI, Pingli MAO, Yanyu LIU, Zheng LIU, Zhi WANG, Feng WANG. Anisotropy and Deformation Mechanisms ofAs-Extruded Mg-3Zn-1Y Magnesium AlloyUnder High Strain Rates[J]. 金属学报, 2018, 54(4): 557-565.
[15] Shoumei XIONG, Jinglian DU, Zhipeng GUO, Manhong YANG, Mengwu WU, Cheng BI, Yongyou CAO. Characterization and Modeling Study on Interfacial Heat Transfer Behavior and Solidified Microstructure of Die Cast Magnesium Alloys[J]. 金属学报, 2018, 54(2): 174-192.
No Suggested Reading articles found!