Please wait a minute...
Acta Metall Sin  2010, Vol. 46 Issue (1): 104-110    DOI:
论文 Current Issue | Archive | Adv Search |
MULTI-OBJECTIVE OPTIMUM DESIGN FOR STRENGTH AND HEAT INSULATION OF METAL FOAM WITH DUAL-SIZE CELLULAR STRUCTURE
KOU Dongpeng; YU Jilin
CAS Key Laboratory of Mechanical Behavior and Design of Materials; University of Science and Technology of China; Hefei 230027
Cite this article: 

KOU Dongpeng YU Jilin. MULTI-OBJECTIVE OPTIMUM DESIGN FOR STRENGTH AND HEAT INSULATION OF METAL FOAM WITH DUAL-SIZE CELLULAR STRUCTURE. Acta Metall Sin, 2010, 46(1): 104-110.

Download:  PDF(1221KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Finite element simulations are performed to study the steady state heat conduction of dual--size metal foams. Simulation results reveal that for a given density, the thermal conductivity of dual-size foams is higher than that of uniform cell size foam. However, the effective thermal conductivity decreases while increasing the cell radius ratio r/R in dual-size foams. A multi-objective optimum design model considering structure strength, heat insulation and light mass requirement is developed, where the objective function is obtained through polynomial fitting of the numerical results. The model is solved by the constraint method< and the optimum cell radius ratio, density and thickness of metal foam are obtained for dual-size metal foams. A comparison of the heat insulation capacity of the dual-size metal foam to the single-size metal foam having the same mass and yield strength shows that the heat insulation capacity of the former is much higher than that of the latter. Hence the dual-size foam structure is superior to that of the uniform cell foam when both load--bearing and heat insulation capacities are required.

Key words:  metal foam      strength      thermal property      multi-objective optimum design     
Received:  22 June 2009     
ZTFLH: 

TB331

 
Fund: 

Supported by National Natural Science Foundation of China (Nos.10672156, 10532020 and 90916026)

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2010/V46/I1/104

[1] Ashby M F, Evans A G, Fleck N A, Gibson L J, Hutchinson J W, Wadley H N G. Metal Foams: A Design Guide. Woburn: Butterworth–Heinemann, 2000: 113
[2] Hanssen A G, Langseth M, Hopperstad O S. Int J Mech Sci, 2001; 43: 153
[3] Chen W, Wierzbicki T. Santosa, S. Acta Mech, 2002; 153: 183

[4] Steeves C A, Fleck N A. Int J Mech Sci, 2004; 46: 561
[5] Hanssen A G, Stobener K, Rausch G, Langseth M, Keller H. Int J Crashworthiness, 2006; 11: 231
[6] Magnucka–Blandzia E, Magnucki K. Thin–Walled Struct, 2007; 45: 432
[7] Evans A G, Hutchinson J W, Ashby M F. Prog Mater Sci, 1998; 43: 171
[8] Zhu H, Sankar B V, Haftka R T, Venkataraman S, Blosser M. Struct Multidisciplinary Optimization, 2004; 28: 349
[9] Gu S, Lu T J, Evans A G. Int J Heat Mass Trans, 2001; 44: 2163
[10] Li L X, Li Y M, Hong L, Yan G R, Chen C Q, Shen S P. Adv Mech, 2008; 38: 256
(李录贤, 李跃明, 洪 \ \ 灵, 闫桂荣, 陈常青, 申胜平. 力学进展, 2008; 38: 256)

[11] Rakow J F, Waas A M. AIAA J, 2007; 45: 329
[12] Kou D P, Li J R, Yu J L, Cheng H F. Scr Mater, 2008; 59: 483
[13] Calmidi V V, Mahajan R L. J Heat Transfer–Transactions ASME, 1999; 121: 466
[14] Gibson L J, Ashby M F. Cellular Solids: Structure and Properties. 2nd ed, Cambridge: Cambridge University Press, 1997: 283
[15] Lu T J, Chen C. Acta Mater, 1999; 47: 1469
[16] Carbonell R G, Whitaker S. In: Bear J, Corapcioglu M Y eds., Fundamentals of Transport Phenomena in Porous Media. Boston: Kluwer, 1984: 123
[17] Hsu C T, Cheng P,Wong K W. ASME J Heat Trans, 1995; 117: 264
[18] ASTM. ASTM Standard Methods of Fire Tests of Building Construction and Materials. West Conshohocken, PA: ASTM, 1988: E119

[1] FENG Qiang, LU Song, LI Wendao, ZHANG Xiaorui, LI Longfei, ZOU Min, ZHUANG Xiaoli. Recent Progress in Alloy Design and Creep Mechanism of γ'-Strengthened Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1125-1143.
[2] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[3] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[4] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[5] LIANG Kai, YAO Zhihao, XIE Xishan, YAO Kaijun, DONG Jianxin. Correlation Between Microstructure and Properties of New Heat-Resistant Alloy SP2215[J]. 金属学报, 2023, 59(6): 797-811.
[6] LIU Junpeng, CHEN Hao, ZHANG Chi, YANG Zhigang, ZHANG Yong, DAI Lanhong. Progress of Cryogenic Deformation and Strengthening-Toughening Mechanisms of High-Entropy Alloys[J]. 金属学报, 2023, 59(6): 727-743.
[7] WANG Bin, NIU Mengchao, WANG Wei, JIANG Tao, LUAN Junhua, YANG Ke. Microstructure and Strength-Toughness of a Cu-Contained Maraging Stainless Steel[J]. 金属学报, 2023, 59(5): 636-646.
[8] WAN Tao, CHENG Zhao, LU Lei. Effect of Component Proportion on Mechanical Behaviors of Laminated Nanotwinned Cu[J]. 金属学报, 2023, 59(4): 567-576.
[9] ZHANG Zhefeng, LI Keqiang, CAI Tuo, LI Peng, ZHANG Zhenjun, LIU Rui, YANG Jinbo, ZHANG Peng. Effects of Stacking Fault Energy on the Deformation Mechanisms and Mechanical Properties of Face-Centered Cubic Metals[J]. 金属学报, 2023, 59(4): 467-477.
[10] CHENG Yuanyao, ZHAO Gang, XU Deming, MAO Xinping, LI Guangqiang. Effect of Austenitizing Temperature on Microstructures and Mechanical Properties of Si-Mn Hot-Rolled Plate After Quenching and Partitioning Treatment[J]. 金属学报, 2023, 59(3): 413-423.
[11] ZHU Yunpeng, QIN Jiayu, WANG Jinhui, MA Hongbin, JIN Peipeng, LI Peijie. Microstructure and Properties of AZ61 Ultra-Fine Grained Magnesium Alloy Prepared by Mechanical Milling and Powder Metallurgy Processing[J]. 金属学报, 2023, 59(2): 257-266.
[12] ZHANG Kaiyuan, DONG Wenchao, ZHAO Dong, LI Shijian, LU Shanping. Effect of Solid-State Phase Transformation on Stress and Distortion for Fe-Co-Ni Ultra-High Strength Steel Components During Welding and Vacuum Gas Quenching Processes[J]. 金属学报, 2023, 59(12): 1633-1643.
[13] WANG Chongyang, HAN Shiwei, XIE Feng, HU Long, DENG Dean. Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel[J]. 金属学报, 2023, 59(12): 1613-1623.
[14] YANG Lei, ZHAO Fan, JIANG Lei, XIE Jianxin. Development of Composition and Heat Treatment Process of 2000 MPa Grade Spring Steels Assisted by Machine Learning[J]. 金属学报, 2023, 59(11): 1499-1512.
[15] HOU Xuru, ZHAO Lin, REN Shubin, PENG Yun, MA Chengyong, TIAN Zhiling. Effect of Heat Input on Microstructure and Mechanical Properties of Marine High Strength Steel Fabricated by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(10): 1311-1323.
No Suggested Reading articles found!