Please wait a minute...
Acta Metall Sin  2009, Vol. 45 Issue (9): 1146-1152    DOI:
论文 Current Issue | Archive | Adv Search |
RESEARCH ON THE HYSTERESIS OF ATOM CLUSTER SIZE VARIATION IN Ga MELT FROM THE NUCLEATION UNDERCOOLING
JIAN Zengyun; ZHOU Jing; CHANG Fang'e; JIE Wanqi
1) School of Materials and Chemical Engineering; Xi'an Technological University; Xi'an 710032 2) State Key Lab of Solidification Processing; Northwestern Polytechnical University; Xi'an 710072
Cite this article: 

JIAN Zengyun ZHOU Jing CHANG Fang'e JIE Wanqi. RESEARCH ON THE HYSTERESIS OF ATOM CLUSTER SIZE VARIATION IN Ga MELT FROM THE NUCLEATION UNDERCOOLING. Acta Metall Sin, 2009, 45(9): 1146-1152.

Download:  PDF(767KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In order to achieve the relationship between the melt thermal history and the solidification structure so
as to explore new methods to effectively control the solidification process and the solidification structure of metal,
the effect of the melt thermal history of Ga on the nucleation undercooling has been studied by using DSC,
and some formulae among the atom cluster size in melt, the nucleation undercooling of melt, the melt temperature and
the concerned physical and chemical parameters of metal have been proposed. The experimental results
show that the nucleation undercooling increases with increasing the holding time at high temperature after a
heating process and decreases with increasing the holding time after cooling to low temperature, but the change
rates of the nucleation undercooling decrease with increasing the holding time. An equation between the atom
number in the largest cluster in the melt and the melt temperature has been obtained by studying the effect of the
liquid temperature on the cluster size thermodynamically and kinetically. Formulae between the homogenous
nucleation undercooling, the heterogeneous nucleation undercooling and the temperature of liquid metal have been
achieved. In terms of these formulae, the atom number in the largest cluster in the melt and the nucleation
undercooling of the melt can be predicted if the temperature at which liquid metal is heated and hold is known. A
method for predicting the hysteretic extent of nucleation temperature after changing the liquid temperature has
been developed. The predicted results of the hysteretic extent of the nucleation temperature are in agreement with
the experiential results. The predicted and experimental hysteretic extents of the nucleation temperature are -10.7
and -10.3 K for Ga heated from 303 K to 373 K, and 7.9 and 8.3 K for Ga cooled from 373 K to 313 K, respectively. The errors between the predicted hysteretic extent of the nucleation temperature and the experimental
result are only 3.9\% for Ga heated from 303 K to 373 K and 4.8\% for Ga cooled from 373 K to 313 K,
respectively.

Key words:  Ga      melt      nucleation undercooling      atom cluster size      hysteresis     
Received:  09 February 2009     
ZTFLH: 

TG24

 
Fund: 

Supported by National Natural Science Foundation of China (Nos.50671075 and 50571076) and National Basic Research Program of China (No.2006CB605202)

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2009/V45/I9/1146

[1] Vasin M G, Lad’yanov V I. Phy Rev, 2003; 68E: 512021
[2] Hpolland–Morutz D, Schenk T, Simonet V, Bellissent R,Convert P, Hansen T, Herlach D M. Mater Sci Eng, 2004; A375–377: 98
[3] Chen H S, Zu F Q, Chen J, Li Z, Ding G H, Huang Z Y. Sci Chin, 2008; 51: 1402
[4] Yin F S, Sun X F, Guan H R, Hu Z Q. J Alloys Compd, 2004; 364: 225
[5] Wang W M, Bian X F. Jing Y Q, Syliusarenko S I. Metall Mater Trans, 2000; 31A: 2163
[6] Kaban I, Gruner S, Hoyer W, Il’inskii A, Shpak A. J Non– Cryst Solids, 2007; 353: 1979
[7] Kaban I, Hoyer W, Ilinskii A, Shpak A, Jovari P. J Non–Cryst Solids, 2007; 353: 1808
[8] Zhang L, Wu Y S, Bian X F, Li H, Wang W M, Wu S. J Non–Cryst Solids, 2000; 262: 169
[9] Lad’yanov V I, Bel’tyukov A L, Men’shikova S G, Maslov V V, Nosenko V K, Mashira V A. Phys Chem Liq, 2008; 46: 71
[10] Lad’yanov V I, Bel’tyukov A L, Maslov V V, Shishmarin A I, Vasin M G, Nosenko V K, Mashira V A. J Non–Cryst Solids, 2007; 353: 3264
[11] Lu Y P, Yang G C, Yang C L, Wang H P, Zhou Y H. Prog Nat Sci, 2006; 16: 287
[12] Geng X G, Chen G, Fu H Z. Acta Metall Sin, 2002; 38: 225
(狄兴国, 陈 光, 傅恒志. 金属学报, 2002; 38: 225)
[13] Cheng G, Yu J W, Xie F Q, Fu H Z. Acta Metall Sin, 2001; 37: 488
(陈光, 俞建威, 谢发勤, 傅恒志. 金属学报, 2001; 37: 488)
[14] Eskin D G, Savran V I, Katgerman L. Metall Mater Trans, 2005; 36A: 1965
[15] Chen Z W, Jie W Q, Zhang R J. Mater Lett, 2005; 59: 2183
[16] Nafisi S, Emadi D, Shehata M T, Shehata M T, Ghomashchi R. Mater Sci Eng, 2006; A432: 71
[17] Li P J, Nikitin V I, Kandalova E G, Nikitin K V. Mater Sci Eng, 2002; A332: 371
[18] Turnbull D. J Appl Phys, 1950; 21: 1022
[19] Turkdogan E T. Physical Chemistry of High Temperature Technology. New York: Academic Press, 1980: 88
[20] Spaepen F, Meyer R B. Scr Metall, 1976; 10: 37
[21] Jian Z Y, Kuribayashi K, Jie W Q, Chang F E. Acta Mater, 2006; 54: 3227
[22] Jian Z Y, Kuribayashi K, Jie W Q. Mater Trans, 2002; 43: 721
[23] Bernardin J D, Mudawar I, Walsh C B, Franses E I. In J Heat Mass Trans, 1997; 40: 1017
[24] Vadgama B, Harris D K. Exp Therm Fluid Sci, 2007; 31: 979

[1] JIANG He, NAI Qiliang, XU Chao, ZHAO Xiao, YAO Zhihao, DONG Jianxin. Sensitive Temperature and Reason of Rapid Fatigue Crack Propagation in Nickel-Based Superalloy[J]. 金属学报, 2023, 59(9): 1190-1200.
[2] DU Jinhui, BI Zhongnan, QU Jinglong. Recent Development of Triple Melt GH4169 Alloy[J]. 金属学报, 2023, 59(9): 1159-1172.
[3] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[4] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
[5] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[6] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
[7] FENG Li, WANG Guiping, MA Kai, YANG Weijie, AN Guosheng, LI Wensheng. Microstructure and Properties of AlCo x CrFeNiCu High-Entropy Alloy Coating Synthesized by Cold Spraying Assisted Induction Remelting[J]. 金属学报, 2023, 59(5): 703-712.
[8] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[9] LIU Jihao, ZHOU Jian, WU Huibin, MA Dangshen, XU Huixia, MA Zhijun. Segregation and Solidification Mechanism in Spray-Formed M3 High-Speed Steel[J]. 金属学报, 2023, 59(5): 599-610.
[10] CHENG Yuanyao, ZHAO Gang, XU Deming, MAO Xinping, LI Guangqiang. Effect of Austenitizing Temperature on Microstructures and Mechanical Properties of Si-Mn Hot-Rolled Plate After Quenching and Partitioning Treatment[J]. 金属学报, 2023, 59(3): 413-423.
[11] TANG Weineng, MO Ning, HOU Juan. Research Progress of Additively Manufactured Magnesium Alloys: A Review[J]. 金属学报, 2023, 59(2): 205-225.
[12] WANG Hu, ZHAO Lin, PENG Yun, CAI Xiaotao, TIAN Zhiling. Microstructure and Mechanical Properties of TiB2 Reinforced TiAl-Based Alloy Coatings Prepared by Laser Melting Deposition[J]. 金属学报, 2023, 59(2): 226-236.
[13] ZHANG Limin, LI Ning, ZHU Longfei, YIN Pengfei, WANG Jianyuan, WU Hongjing. Macrosegregation Mechanism of Primary Silicon Phase in Cast Hypereutectic Al-Si Alloys Under Alternating Electropulsing[J]. 金属学报, 2023, 59(12): 1624-1632.
[14] CHEN Xueshuang, HUANG Xingmin, LIU Junjie, LV Chao, ZHANG Juan. Microstructure Regulation and Strengthening Mechanisms of a Hot-Rolled & Intercritical Annealed Medium-Mn Steel Containing Mn-Segregation Band[J]. 金属学报, 2023, 59(11): 1448-1456.
[15] DUAN Huichao, WANG Chunyang, YE Hengqiang, DU Kui. Electron Tomography Analysis on the Structure and Chemical Composition of Nanoporous Metal Surfaces[J]. 金属学报, 2023, 59(10): 1291-1298.
No Suggested Reading articles found!