Please wait a minute...
Acta Metall Sin  2009, Vol. 45 Issue (9): 1141-1145    DOI:
论文 Current Issue | Archive | Adv Search |
PREPARATION AND ELECTROMAGNETIC PROPERTIES OF MICROMETER Fe FLAKES MODIFIED WITH EPOXY RESIN
DONG Deming; GUAN Jianguo; WANG Wei; LI Wei; ZHOU Jing
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing; Wuhan University of Technology;Wuhan 430070  
Cite this article: 

DONG Deming GUAN Jianguo WANG Wei LI Wei ZHOU Jing. PREPARATION AND ELECTROMAGNETIC PROPERTIES OF MICROMETER Fe FLAKES MODIFIED WITH EPOXY RESIN. Acta Metall Sin, 2009, 45(9): 1141-1145.

Download:  PDF(913KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Ferromagnetic metallic flakes show high magnetic permeability in gigahertz frequency due to their large saturation magnetization and the effect of particles shape. However, their permittivity is too large to wave impedance matching and to application as microwave absorbent. In this paper, the surfaces of micrometer Fe flakes were modified by a thin layer of epoxy resin based on the reaction of hydroxyl groups anchored in the surface of Fe flakes with 3-aminopropyltriethoxy silane and diglycidyl ether of bisphenol A. The structure, morphology, surface state and microwave electromagnetic properties of the as-prepared products were characterized by Fourier transformed infrared spectra, scanning electron microscopy, atomic force microscopy, and network analyzer. The results show that compared with the pristine Fe flakes, the Fe flakes modified by a thin layer of epoxy resin exhibit a substantially decreased complex permittivity, particularly the imaginary part decreased by 30%-80%, but remain almost the same magnetic permeability, which is an absorber with excellent microwave absorbing properties. At the same time, the surface modification mechanism was prosposed. Compared with traditional core-shell modification, the method presented is effective for continuously tuning permittivity of electromagnetic wave absorbents.

Key words:  micrometer Fe flake      permittivity      surface modification      epoxy resin     
Received:  16 February 2009     
ZTFLH: 

TB34

 
Fund: 

Supported by National High Technical Research and Development Program of China (No.2006AA03A209) and Young Teachers from Fok Ying Tung Education Foundation (No.101049)

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2009/V45/I9/1141

[1] Yoshida S, Sato M, Sugawara E, Shimada Y. J Appl Phys, 1999; 35: 4636
[2] Hashimoto O, Takase Y, Haga S. Trans IEICE Jpn, 2003; 86B: 113
[3] Smit J, Wijn H P J. Ferrites. Eindhoven: Philips Technical Library, 1959: 78
[4] Naito Y, Suetake K. IEEE Trans Microwave Theory Technol, 1971; 19: 65
[5] Zhang X N. PhD Thesis, Beijing University of Technology, 2003
(张晓宁. 北京工业大学博士学位论文, 2003)

[6] Nie Y, He H H, Zhao Z S, Gong R Z, Yu H B. J Magn Magn Mater, 2006; 306: 125
[7] Xie J L, Lu C L, Deng L J. Acta Mater Compos Sin, 2007; 24: 18
(谢建良, 陆传林, 邓龙江. 复合材料学报, 2007; 24: 18)

[8] Wang Q, Guan J G, Liu Q, Wang W, Zhang Q J. J Alloy Compd, 2006; 413: 155
[9] Tong G X,Wang W, Guan J G, Zhang Q J. J InorgMater, 2006; 21: 1461
(童国秀, 王 维, 官建国, 张清杰. 无机材料学报, 2006; 21: 1461)

[10] Jiang M J, Dang Z M, Yao S H, Bai J B. Chem Phys Lett, 2008; 457: 352
[11] Zhang Q Y, Zhang H P, Xie G, Zhang J P. J Magn Magn Mater, 2007; 311: 140
[12] Jiang M J, Dang Z M, Xu H P. Eur Polym J, 2007; 43: 4924
[13] Li H Y, Wang R G, Hu H L, Liu W B. Appl Surf Sci, 2008; 255: 1984
[14] Mittal V, Herle V. J Colloid Interface Sci, 2008; 327: 295
[15] Dash S, Mishra S, Patel S, Mishra B K. Adv Colloid Interface, 2008; 140: 77
[16] Vrkoslav V, Jel´?nek I, Trojan T, Jindˇrich J, Dian J. Physica, 2007; 38E: 200
[17] Walser R M, KangW. IEEE Trans Magn, 1998; 34: 1144
[18] Musal H M, Hahn H T. IEEE Trans Magn, 1989; 25: 3851

[1] GAO Han, LIU Li, ZHOU Xiaoyu, ZHOU Xinyi, CAI Wenjun, ZHOU Hongling. Preparation and Bioactivity of Micro-Nano Structure on Ti6Al4V Surface[J]. 金属学报, 2023, 59(11): 1466-1474.
[2] CUI Zhenduo, ZHU Jiamin, JIANG Hui, WU Shuilin, ZHU Shengli. Research Progress of the Surface Modification of Titanium and Titanium Alloys for Biomedical Application[J]. 金属学报, 2022, 58(7): 837-856.
[3] Erlin ZHANG, Xiaoyan WANG, Yong HAN. Research Status of Biomedical Porous Ti and Its Alloy in China[J]. 金属学报, 2017, 53(12): 1555-1567.
[4] Zhentao YU, Sen YU, Jun CHENG, Xiqun MA. Development and Application of Novel Biomedical Titanium Alloy Materials[J]. 金属学报, 2017, 53(10): 1238-1264.
[5] Xiao LIN, Jun GE, Shuilin WU, Baohua LIU, Huilin YANG, Lei YANG. Advances in Metallic Biomaterials with both Osteogenic and Anti-Infection Properties[J]. 金属学报, 2017, 53(10): 1284-1302.
[6] LUO Xinmin, WANG Xiang, CHEN Kangmin, LU Jinzhong, WANG Lan, ZHANG Yongkang. SURFACE LAYER HIGH-ENTROPY STRUCTURE AND ANTI-CORROSION PERFORMANCE OF AERO-ALUMINUM ALLOY INDUCED BY LASER SHOCK PROCESSING[J]. 金属学报, 2015, 51(1): 57-66.
[7] LUO Xinmin, CHEN Kangmin, ZHANG Jingwen, LU Jinzhong,REN Xudong,LUO Kaiyu, ZHANG Yongkang. DISLOCATION MECHANISM OF SURFACE MODIFICATION FOR COMMERCIAL PURITY ALUMINUM  AND ALUMINUM ALLOY BY LASER SHOCK PROCESSING[J]. 金属学报, 2013, 49(6): 667-674.
[8] ZHANG Fenggang ZHU Xiaopeng WANG Mingyang LEI Mingkai. SURFACE MODIFICATION OF WC-Ni CEMENTED CARBIDE FOR SEALS BY HIGH-INTENSITY PULSED ION BEAM IRRADIATION[J]. 金属学报, 2011, 47(7): 958-964.
[9] LENG Chongyan ZHOU Rong ZHANG Xu LU Dehong LIU Hongxi . WEAR PERFORMANCE OF Ti6Al4V ALLOY MODIFIED BY Ag+Ta DUAL--ION IMPLANTATION[J]. 金属学报, 2009, 45(6): 764-768.
[10] Xu Wang. EXPERIMENTAL RESEARCH ON THE SURFACE MODIFICATION OF 316L STAINLESS STEEL BY HIGH-INTENSITY PULSED ION BEAMS[J]. 金属学报, 2007, 43(4): 393-398 .
[11] ZHANG Haifeng;LU Mangqi;HU Zhuangqi(State Key Laboratory of RSA; Insti tute of Metal Research; Chinese Acaderny of Sciences; Shenyang); LI Wen(ShenyangInstitute of Technology). SURFACE MODIFICATION OF HARD ACTIVATED HYDROGEN STORAGE MATERIAL VANADIUM[J]. 金属学报, 1994, 30(22): 459-464.
[12] ZHANG Dawei;YU Weicheng;WANG Zhongguang Institute of Metal Research; Academia Sinica; Shenyang. IMPROVEMENT ON FATIGUE LIFE OF Ti-6Al-4V ALLOY BY CARBON ION IMPLANTATION[J]. 金属学报, 1990, 26(5): 39-43.
[13] LI Chenglao;SHEN Lian Xi'an Jiaotong University Li Chenglao; Department of Material Engineering; Xi'an Jiaotong University;Xi'an 710049. RESIDUAL AUSTENITE AND STRAIN-INDUCED MARTENSITE IN LASER HARDENING LAYER ON GRAY CAST IRON[J]. 金属学报, 1989, 25(6): 74-77.
No Suggested Reading articles found!