Please wait a minute...
Acta Metall Sin  2009, Vol. 45 Issue (7): 844-848    DOI:
论文 Current Issue | Archive | Adv Search |
EXPERIMENTAL INVESTIGATION ON FATIGUE BEHAVIOR OF NANOCRYSTALLINE NICKEL
XIE Jijia; HONG Youshi
State Key Laboratory of Nonlinear Mechanics; Institute of Mechanics; Chinese Academy of Sciences; Beijing 100190
Cite this article: 

XIE Jijia HONG Youshi. EXPERIMENTAL INVESTIGATION ON FATIGUE BEHAVIOR OF NANOCRYSTALLINE NICKEL. Acta Metall Sin, 2009, 45(7): 844-848.

Download:  PDF(921KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Electrodeposited nanocrystalline (nc) metal is often used as a model material in nc material investigation. But electrodeposition typically yields only thin foils that are at most several hundred micrometers in thickness, this arouses experimental difficulties in fatigue testing. There are several investigations on fatigue of electrodeposited nc metals. However, for the lack of direct experimental evidence, the mechanism of fatigue crack nucleation for nc materials is still not clear. In addition to fatigue properties, the microstructure stability is another key point for the practice of bulk nc materials. Some research papers indicated that the grains of nc metal would grow up under quasi--static loading, but no any investigation give out results under cyclic loading. In this paper, fatigue of electrodeposited nc Ni was experimentally investigated. Fatigue testing was carried out to obtain the S--N curves. For the reason that surface is the most important site for fatigue crack initiation, atomic force microscopy (AFM) was used to scan the sample surface before and after fatigue testing, which provides a direct observation on fatigue crack nucleation mechanism. For investigation on the stability of microstructure, the AFM was also used to measure the grain size of samples after fatigue loading, and nanoindenter was used to investigate the change of mechanical properties of samples after fatigue testing. The S--N curves indicate that nanocryatalline samples have a higher fatigue limit than coarse grain ones. The AFM images indicate that cell pellet morphology with the average size of 73 nm appeared on sample surface after high cycle fatigue testing and the grain size is the same as those before the fatigue testing. From the results of nanoindentation, the mechanical properties including hardness, strain rate sensitivity and elastic modules of samples also keep no obvious change after fatigue loading. Based on these results, the fatigue crack nucleation mechanism of electrodeposited nc Ni was discussed.

Key words:  nanocrystalline Ni      fatigue crack initiation      nanoindentation      AFM     
Received:  24 November 2008     
ZTFLH: 

TG113.25

 
Fund: 

Supported by National Natural Science Foundation of China (Nos.10772178 and 10721202) and LNM Initial Funding forYoung Investigators

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2009/V45/I7/844

[1] Kumar K S, van Swygenhoven H, Suresh S. Acta Mater, 2003; 51: 5743
[2] Meyers M A, Mishra A, Benson D J. Prog Mater Sci, 2006; 51: 427
[3] Suresh S. Fatigue of Materials. New York: Cambridge University Press, 1991: 41
[4] Yagi N, Rikukawa A, Mizubayashi H, Tanimoto H. Mater Sci Eng, 2006; A442: 323
[5] Chinh N Q, Szommer P, Horita Z, Langdon T G. Adv Mater, 2006; 18: 34
[6] Wang N, Wang Z R, Aust K T, Erb U. Mater Sci Eng, 1997; A237: 150
[7] Yin W M, Whang S H, Mirshams R, Xiao C H. Mater Sci Eng, 2001; A301: 18
[8] Yin W M, Whang S H. Scr Mater, 2001; 44: 569
[9] Yin W M, Whang S H, Mirshams R A. Acta Mater, 2005; 53: 383
[10] Hanlon T, Kwon Y N, Suresh S. Scr Mater, 2003; 49: 675
[11] Hanlon T, Tabachnikova E D, Suresh S. Int J Fatigue, 2005; 27: 1147
[12] Moser B, Hanlon T, Kumar K S, Suresh S. Scr Mater, 2006; 54: 1151
[13] Zhang K, Weertman J R, Eastman J A. Appl Phys Lett, 2004; 85: 5197
[14] Zhang K, Weertman J R, Eastman J A. Appl Phys Lett, 2005; 87: 061921
[15] Liao X Z, Kilmametov A R, Valiev R Z, Gao H, Li X, Mukherjee A K, Bingert J F, Zhu Y T. Appl Phys Lett, 2006; 88: 021909
[16] Yang B, Vehoff H, Hohenvarter A, Hafok M, Pippan R. Scr Mater, 2008; 58: 790
[17] Brandstetter S, Zhang K, Escuadro A, Weertman J R, van Swygenhoven H. Scr Mater, 2008; 58: 61
[18] Haslam A J, Moldovan D, Yamakov V, Wolf D, Phillpot S R, Gleiter H. Acta Mater, 2003; 51: 2097
[19] Schiφtz J. Mater Sci Eng, 2004; A375–377: 975
[20] Witney B, Sanders P G, Weertman J R. Scr Metall Mater, 1995; 33: 2025
[21] Xie J, Wu X, Hong Y. Adv Mater Res, 2008; 33–37: 925
[22] Kumar K S, Suresh S, Chisholm M F, Horton J A, Wang P. Acta Mater, 2003; 51: 387
[23] Hasnaoui A, van Svygenhoven H, Derlet P M. Science, 2003; 300: 1550
[24] Raj R, Ashby M F. Metall Trans, 1971; 2: 1113

[1] ZHU Bin, YANG Lan, LIU Yong, ZHANG Yisheng. Micromechanical Properties of Duplex Microstructure of Martensite/Bainite in Hot Stamping via the Reverse Algorithms in Instrumented Sharp Indentation[J]. 金属学报, 2022, 58(2): 155-164.
[2] LAN Liangyun, KONG Xiangwei, QIU Chunlin, DU Linxiu. A Review of Recent Advance on Hydrogen Embrittlement Phenomenon Based on Multiscale Mechanical Experiments[J]. 金属学报, 2021, 57(7): 845-859.
[3] SUN Xiaojun, HE Jie, CHEN Bin, ZHAO Jiuzhou, JIANG Hongxiang, ZHANG Lili, HAO Hongri. Effect of Fe Content on the Microstructure, Electrical Resistivity, and Nanoindentation Behavior of Zr60Cu40-xFex Phase-Separated Metallic Glasses[J]. 金属学报, 2021, 57(5): 675-683.
[4] LIU Jizhao, HUANG Hefei, ZHU Zhenbo, LIU Awen, LI Yan. Numerical Simulation of Nanohardness in Hastelloy N Alloy After Xenon Ion Irradiation[J]. 金属学报, 2020, 56(5): 753-759.
[5] Sensen HUANG,Yingjie MA,Shilin ZHANG,Min QI,Jiafeng LEI,Yaping ZONG,Rui YANG. Influence of Alloying Elements Partitioning Behaviors on the Microstructure and Mechanical Propertiesin α+β Titanium Alloy[J]. 金属学报, 2019, 55(6): 741-750.
[6] Pengyue ZHAO, Yongbo GUO, Qingshun BAI, Feihu ZHANG. Research of Surface Defects of Polycrystalline Copper Nanoindentation Based on Microstructures[J]. 金属学报, 2018, 54(7): 1051-1058.
[7] Dongjun FAN, Guangda LU, Guikai ZHANG, Jinchun BAO, Feilong YANG, Xin XIANG, Chang'an CHEN. Deuterium and Tritium Permeation in the Reduced Activation Ferritic/Martensitic Steel[J]. 金属学报, 2018, 54(4): 519-526.
[8] Hongyang XU,Haibo KE,Huogen HUANG,Pei ZHANG,Pengguo ZHANG,Tianwei LIU. Nanoindentation Creep Behavior of U65Fe30Al5 Amorphous Alloy[J]. 金属学报, 2017, 53(7): 817-823.
[9] Jihou LIU,Hongyun ZHAO,Zhuolin LI,Xiaoguo SONG,Hongjie DONG,Yixuan ZHAO,Jicai FENG. Microstructures and Mechanical Properties of Cu/Sn/Cu Structure Ultrasonic-TLP Joint[J]. 金属学报, 2017, 53(2): 227-232.
[10] Biao YANG,Bailin ZHENG,Xingjian HU,Pengfei HE,Zhufeng YUE. EFFECT OF VOID ON NANOINDENTATION PROCESS OF Ni-BASED SINGLE CRYSTAL ALLOY[J]. 金属学报, 2016, 52(2): 129-134.
[11] XU Yang, SUN Mingxue, ZHOU Yanlei, LIU Zhenyu. PRECIPITATION BEHAVIOR OF (Nb, Ti)C IN COILING PROCESS AND ITS EFFECT ON MICRO-MECHANICAL CHARACTERISTICS OF FERRITE[J]. 金属学报, 2015, 51(1): 31-39.
[12] QIN Fei, XIANG Min, WU Wei. THE STRESS-STRAIN RELATIONSHIP OF TSV-Cu DETERMINED BY NANOINDENTATION[J]. 金属学报, 2014, 50(6): 722-726.
[13] LIU Li, LI Ying, WANG Fuhui. ELECTROCHEMICAL CORROSION BEHAVIOR OF NANOCRYSTALLIZED MATERIALS: GROWTH OF PASSIVE FILM AND LOCAL PITTING CORROSION[J]. 金属学报, 2014, 50(2): 212-218.
[14] CHENG Yuhao ZHANG Yuefei MAO Shengcheng HAN Xiaodong ZHANG Ze. EFFECT OF TEMPERATURE ON MICROSTRUCTURE AND NANOINDENTATION MECHANICAL PROPERTIES OF ELECTRODEPOSITED NANO-TWINNED Ni[J]. 金属学报, 2012, 48(11): 1342-1348.
[15] LI Yesheng WANG Wei. MEASUREMENTS OF HARDNESS AND ELASTIC MODULUS OF Cu THIN FILM BY MEANS OF NANOINDENTATION[J]. 金属学报, 2010, 46(9): 1098-1102.
No Suggested Reading articles found!