Please wait a minute...
Acta Metall Sin  2015, Vol. 51 Issue (1): 31-39    DOI: 10.11900/0412.1961.2014.00265
Current Issue | Archive | Adv Search |
PRECIPITATION BEHAVIOR OF (Nb, Ti)C IN COILING PROCESS AND ITS EFFECT ON MICRO-MECHANICAL CHARACTERISTICS OF FERRITE
XU Yang, SUN Mingxue, ZHOU Yanlei, LIU Zhenyu()
State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819
Cite this article: 

XU Yang, SUN Mingxue, ZHOU Yanlei, LIU Zhenyu. PRECIPITATION BEHAVIOR OF (Nb, Ti)C IN COILING PROCESS AND ITS EFFECT ON MICRO-MECHANICAL CHARACTERISTICS OF FERRITE. Acta Metall Sin, 2015, 51(1): 31-39.

Download:  HTML  PDF(13492KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

High strength micro-alloyed steel has been widely used in automobile and machines because of the remarkable high strength and forming property which are attributed to nano-precipitates and refinement of the organization. Since the nano-precipitates are mostly nucleated between austenite/ferrite transition and ferrite can significantly advance strength, it is important to investigate precipitate behavior in coiling process. Nanoindentation technology provides a chance to study the special influence of nano-precipitates on the micro-properties of ferrite. The effect of cooling rate during continuous cooling process and coiling process on microstructural evolution and micro-hardness of Nb-Ti micro-alloyed steel were studied by using the thermal mechanical simulator, micro-hardness instrument, TEM and nanoindentation instrument. The precipitate behaviors of (Nb,Ti)C in coiling process and its effect on nano-hardnesss of ferrite were discussed. Experiments results indicated that the increase of cooling rate in continuous cooling process and coiling process could promote the microstructure transition from ferrite and pearlite to bainite. The micro-hardness of the tested steel increased with the increase of cooling rate in continuous cooling process, and decreased with the cooling rate in coiling process because of the large number of the dispersive nano-precipitate in ferrite which could improve the strength of matrix. The smaller cooling rate could promote volume fraction of (Nb, Ti)C particles in ferrite because there was enough time for the nucleation and growth of (Nb, Ti)C precipitates. When the cooling rate in coiling process was 0.1 ℃/s, precipitates were dispersive in ferrite matrix with a diameter of less than 10 nm. The nanohardness and Young's modulus of ferrite were 4.13 and 249.3 GPa for Nb-Ti micro-alloyed steel, 2.64 and 237.4 GPa for C-Si-Mn steel. The contribution of nano-precipitates to nano-hardness of ferrite reached 1.49 GPa.

Key words:  nano-precipitate      cooling rate      nanoindentation      nanohardness      Young's modulus     
ZTFLH:  TG142  
Fund: Supported by Fundamental Research Funds for the Central Universities (Nos.N120807001 and N110607006)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2014.00265     OR     https://www.ams.org.cn/EN/Y2015/V51/I1/31

Fig.1  Process routings of thermal simulation experiments
Fig.2  OM images of experimental steel in CCT process under cooling rates of 0.5 ℃/s (a), 1 ℃/s (b), 5 ℃/s (c) and 20 ℃/s (d)
Fig.3  CCT curves (a) and variation of micro-hardness with cooling rate (b) of experimental steel (B—bainite, F—ferrite, P—pearlite)
Fig.4  OM images of experimental steel under cooling rates of 0.05 ℃/s (a), 0.1 ℃/s (b), 0.5 ℃/s (c), 1 ℃/s (d), 2 ℃/s (e) and effects of cooling rates on micro-hardness (f)
Fig.5  Precipitation morphologies of experimental steel under cooling rates of 0.1 ℃/s (a), 0.5 ℃/s (b), 1 ℃/s (c) and 2 ℃/s (d)
Fig.6  Morphology after nanoindentation (a), load-depth curves (b) and nanohardness-depth curves (c) of experimental steels under cooling rate 0.1 ℃/s
Fig.7  Schematic of movement of dislocations around nanoindentation tip
[1] Charleux M, Poole W J, Militzer M, Deschamps A. Metall Trans, 2001; 32A: 1635
[2] Funakawa Y, Shiozaki T, Tomita K, Yamamoto T, Maeda E. ISIJ Int, 2004; 44: 1945
[3] Matlock D K, Krauss G, Speer J G. J. Mater Proc Technol, 2001; 117: 324
[4] Wang C J, Yong Q L, Sun X J, Mao X P, Li Z D, Yong X. Acta Metall Sin, 2011; 47: 1541
(王长军, 雍岐龙, 孙新军, 毛新平, 李昭东, 雍 兮. 金属学报, 2011; 47: 1541)
[5] Liu Y C, Zhu F X, Li Y M, Wang G D. ISIJ Int, 2005; 45: 851
[6] Craven A J, He K, Garvie L A J, Baker T N. Acta Mater, 2000; 48: 3857
[7] Han Y, Shi J, Xu L, Cao W Q, Dong H. Mater Sci Eng, 2011; A530: 643
[8] Mao X P, Sun X J, Kang Y L, Lin Z Y, Zhou J. Iron Steel, 2005; 40(9): 65
(毛新平, 孙新军, 康永林, 林振源, 周 建. 钢铁, 2005; 40(9): 65)
[9] Yen H W, Chen P Y, Huang C Y, Yang J R. Acta Mater, 2011; 59: 6264
[10] Yen H W, Chen C Y, Wang T Y, Huang C Y, Yang J R. Mater Sci Technol, 2010; 26: 421
[11] Okamoto R, Borgenstam A, Agren J. Acta Mater, 2010; 58: 4783
[12] Okamoto R, Agen J. Acta Mater, 2010; 58: 4791
[13] Lu J X, Wang G D. Iron Steel, 2005; 40(9): 69
(陆匠心, 王国栋. 钢铁, 2005; 40(9): 69)
[14] Duan X G, Cai Q W, Wu H B. Acta Metall Sin, 2011; 47: 251
(段修刚, 蔡庆伍, 武会宾. 金属学报, 2011; 47: 251)
[15] Yong Q L. Secondary Phases in Steels. Beijing: Metallurgical Industry Press, 2006: 384
(雍岐龙. 钢铁材料中的第二相. 北京: 冶金工业出版社, 2006: 384)
[16] Yi H L, Du L X, Wang G D. ISIJ Int, 2006; 46: 754.
[17] Sun C F, Cai Q W, Wu H B, Mao H Y, Chen H Z. Acta Metall Sin, 2012; 48: 1451
(孙超凡, 蔡庆伍, 武会宾, 毛红艳, 陈宏振. 金属学报, 2012; 48: 1415)
[18] Misra R D K, Nathani H, Hartmanm J E, Siciliano F. Mater Sci Eng, 2005; A394: 339
[19] Hong S G, Kang K B, Park C G. Scr Mater, 2002; 46: 163
[20] Wang X N, Di H S, Du L X. Acta Metall Sin, 2012; 48: 621
(王晓南, 邸洪双, 杜林秀. 金属学报, 2012; 48: 621)
[21] Park D B, Huh M Y, Shim J H, Suh J Y, Lee K H, Jung W S. Mater Sci Eng, 2013; A560: 528
[22] Murakami T, Hatano H, Miymoto G, Furuhara T. ISIJ Int, 2012; 52: 616
[23] Bhadeshia H K D H. Bainite in Steels. London: IOM Communications Ltd, 2001: 19
[24] Bhadeshia H K D H, Christian J W. Metall Trans, 1990; 21A: 767
[25] Kulkarni A V, Bhushan B. Thin Solid Films, 1996; 290-291: 206
[1] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[2] ZHANG Yuexin, WANG Jujin, YANG Wen, ZHANG Lifeng. Effect of Cooling Rate on the Evolution of Nonmetallic Inclusions in a Pipeline Steel[J]. 金属学报, 2023, 59(12): 1603-1612.
[3] LI Shanshan, CHEN Yun, GONG Tongzhao, CHEN Xingqiu, FU Paixian, LI Dianzhong. Effect of Cooling Rate on the Precipitation Mechanism of Primary Carbide During Solidification in High Carbon-Chromium Bearing Steel[J]. 金属学报, 2022, 58(8): 1024-1034.
[4] ZHU Bin, YANG Lan, LIU Yong, ZHANG Yisheng. Micromechanical Properties of Duplex Microstructure of Martensite/Bainite in Hot Stamping via the Reverse Algorithms in Instrumented Sharp Indentation[J]. 金属学报, 2022, 58(2): 155-164.
[5] LAN Liangyun, KONG Xiangwei, QIU Chunlin, DU Linxiu. A Review of Recent Advance on Hydrogen Embrittlement Phenomenon Based on Multiscale Mechanical Experiments[J]. 金属学报, 2021, 57(7): 845-859.
[6] SUN Xiaojun, HE Jie, CHEN Bin, ZHAO Jiuzhou, JIANG Hongxiang, ZHANG Lili, HAO Hongri. Effect of Fe Content on the Microstructure, Electrical Resistivity, and Nanoindentation Behavior of Zr60Cu40-xFex Phase-Separated Metallic Glasses[J]. 金属学报, 2021, 57(5): 675-683.
[7] ZHU Yuping, Naicheng SHENG, XIE Jun, WANG Zhenjiang, XUN Shuling, YU Jinjiang, LI Jinguo, YANG Lin, HOU Guichen, ZHOU Yizhou, SUN Xiaofeng. Precipitation Behavior of W-Rich Phases in a High W-Containing Ni-Based Superalloys K416B[J]. 金属学报, 2021, 57(2): 215-223.
[8] LIU Jizhao, HUANG Hefei, ZHU Zhenbo, LIU Awen, LI Yan. Numerical Simulation of Nanohardness in Hastelloy N Alloy After Xenon Ion Irradiation[J]. 金属学报, 2020, 56(5): 753-759.
[9] WANG Xi,LIU Renci,CAO Ruxin,JIA Qing,CUI Yuyou,YANG Rui. Effect of Cooling Rate on Boride and Room Temperature Tensile Properties of β-Solidifying γ-TiAl Alloys[J]. 金属学报, 2020, 56(2): 203-211.
[10] LI Yaqiang, LIU Jianhua, DENG Zhenqiang, QIU Shengtao, ZHANG Pei, ZHENG Guiyun. Peritectic Solidification Characteristics and Mechanism of 15CrMoG Steel[J]. 金属学报, 2020, 56(10): 1335-1342.
[11] Sensen HUANG,Yingjie MA,Shilin ZHANG,Min QI,Jiafeng LEI,Yaping ZONG,Rui YANG. Influence of Alloying Elements Partitioning Behaviors on the Microstructure and Mechanical Propertiesin α+β Titanium Alloy[J]. 金属学报, 2019, 55(6): 741-750.
[12] GUO Junli, WEN Guanghua, FU Jiaojiao, TANG Ping, HOU Zibing, GU Shaopeng. Influence of Cooling Rate on the Contraction of Peritectic Transformation During Solidification of Peritectic Steels[J]. 金属学报, 2019, 55(10): 1311-1318.
[13] Pengyue ZHAO, Yongbo GUO, Qingshun BAI, Feihu ZHANG. Research of Surface Defects of Polycrystalline Copper Nanoindentation Based on Microstructures[J]. 金属学报, 2018, 54(7): 1051-1058.
[14] Ke ZHANG, Zhaodong LI, Fengli SUI, Zhenghai ZHU, Xiaofeng ZHANG, Xinjun SUN, Zhenyi HUANG, Qilong YONG. Effect of Cooling Rate on Microstructure Evolution and Mechanical Properties of Ti-V-Mo Complex Microalloyed Steel[J]. 金属学报, 2018, 54(1): 31-38.
[15] Hongyang XU,Haibo KE,Huogen HUANG,Pei ZHANG,Pengguo ZHANG,Tianwei LIU. Nanoindentation Creep Behavior of U65Fe30Al5 Amorphous Alloy[J]. 金属学报, 2017, 53(7): 817-823.
No Suggested Reading articles found!