Please wait a minute...
Acta Metall Sin  2017, Vol. 53 Issue (7): 817-823    DOI: 10.11900/0412.1961.2016.00322
Orginal Article Current Issue | Archive | Adv Search |
Nanoindentation Creep Behavior of U65Fe30Al5 Amorphous Alloy
Hongyang XU,Haibo KE,Huogen HUANG,Pei ZHANG,Pengguo ZHANG,Tianwei LIU()
Institute of Materials, China Academy of Engineering Physics, Jiangyou 621907, China
Download:  HTML  PDF(2482KB) 
Export:  BibTeX | EndNote (RIS)      

Uranium is a valuable nuclear fuel material, but this application is unavoidably handicapped by the easy creep behavior of the metal caused by the combination of stress and irradiation in nuclear reactor. Uranium-based amorphous alloys, as a kind of potential new materials in the nuclear industry, would be challenged by this issue when used in such situation. However, creep properties of these materials have not been reported in the previous studies. In order to preliminarily investigate the creep phenomenon derived from stress function, this work is performed to study the ambient creep behavior of a new amorphous alloy U65Fe30Al5. This alloy was tested by using a nanoindentation technique under different peak loads and loading rates. The results indicate that the creep displacement gradually increases with either the peak load or the loading rate in equal creeping time, but this tendency vanishes when exceeding a critical loading rate. The fitting based on an empirical creep equation reveals that the stress exponent of the alloy ascends when raising the peak load, and firstly declines with the loading rate and then keeps constant above the critical rate. Compared with conventional crystalline alloys, the U-Co-Al alloy shows a larger stress exponent, reflecting the possible existence of rich free volume in the amorphous alloy.

Key words:  amorphous alloy      uranium alloy      nanoindentation      creep      stress exponent     
Received:  21 July 2016     
Fund: Supported by National Natural Science Foundation of China (No.51501169), National Defense Basic Scientific Research (No.B1520133007) and Scientific and Technological Development Foundation of China Academy of Engineering Physics (Nos.2013A0301015 and 2014B0302047)

Cite this article: 

Hongyang XU,Haibo KE,Huogen HUANG,Pei ZHANG,Pengguo ZHANG,Tianwei LIU. Nanoindentation Creep Behavior of U65Fe30Al5 Amorphous Alloy. Acta Metall Sin, 2017, 53(7): 817-823.

URL:     OR

Fig.1  Loading function and ideal characteristic curves for nanoindentation creep (S—contact stiffness, h—indentation depth, F—load, hmax—maximum indentation depth, hf—permanent deformation depth after fully unloading, t—time, σ—stress)

(a) load-time curve (b) load-depth curve (c) standard creep depth-time curve

Fig.2  XRD spectrum of U65Fe30Al5 amorphous alloy
Fig.3  Load-depth (a) and creep displacement-time (b) curves during 30 s nanoindentation creeping under different peak loads (The curves in the Fig.3b are offset from the origin points of the creep process)
Fig.4  Load-depth (a) and creep displacement-time (b) curves during 30 s nanoindentation creeping under different loading rates (Curves in Fig.4a are translation-transformed)
Fig.5  Variation of creep displacement versus peak load (a) and loading rate (b) during the nanoindentation creeping of U65Fe30Al5 amorphous alloy
Fig.6  Experimental and fitting curve (Eq.(3)) (a) and the variation of stress exponent derived from stress-strain rate relationship curve (b) during the nanoindentation creeping of U65Fe30Al5 amorphous alloy (h0—initial creep displacement, t0—initial creep time, a and k—fitting parameters)
Fig.7  Curves of stress exponent-peak load (a) and stress exponent-loading rate (b) during the steady creeping of U65Fe30Al5 amorphous alloy(n—stress exponent)
Composition Material type Peak load mN Creep time / s Loading rate mNs-1 Stress exponent
U65Fe30Al5 Amorphous 100 30 20 89
Ti40Zr25Ni3Cu12Be20[18] Amorphous 100 2000 0.1 5
Ta film[24] Amorphous 8 40 5 78.7
Fused quartz[20] Glass 69.4 95 - 85
B6O[26] Polycrystalline 100 15 200 0.14
Table 1  Creep stress exponents for different materials in nanoindentation tests
[1] Mu X Y.Creep Mechanics [M]. Xi'an: Xi'an Jiaotong University Press, 1990: 67
[1] (穆霞英. 蠕变力学[M]. 西安: 西安交通大学出版社, 1990: 67)
[2] ?adek J.Creep in Metallic Materials[M]. Amsterdam: Elsevier Science Ltd., 1988: 85
[3] Nabarro F R N, de Villiers H L. The Physics of Creep[M]. London: Taylor and Francis, 1995: 113
[4] Li W B, Henshall J L, Hooper R M, et al.The mechanisms of indentation creep[J]. Acta Metall. Mater., 1991, 39: 3099
[5] Ranaivomanana N, Multon S, Turatsinze A.Basic creep of concrete under compression, tension and bending[J]. Constr. Build. Mater., 2013, 38: 173
[6] Mahmudi R, Roumina R, Raeisinia B.Nvestigation of stress exponent in the power-law creep of Pb-Sb alloys[J]. Mater. Sci. Eng., 2004, A382: 15
[7] Gao Y, Wen S P, Wang X H, et al.Investigation on indentation creep by depth sensing indentation[J]. J. Aeronaut. Mater., 2006, 26(3): 148
[7] (高阳, 文胜平, 王晓慧等. 纳米压痕法测试压痕蠕变的应用研究[J]. 航空材料学报, 2006, 26(3): 148)
[8] Elmustafa A A, Stone D S.Strain rate sensitivity in nanoindentation creep of hard materials[J]. J. Mater. Res., 2007, 22: 2912
[9] Lucas B N, Oliver W C.Indentation power-law creep of high-purity indium[J]. Metall. Mater. Trans., 1999, 30A: 601
[10] Wang W H.The nature and properties of amorphous matter[J]. Prog. Phys., 2013, 33: 177
[10] (汪卫华. 非晶态物质的本质和特性[J]. 物理学进展, 2013, 33: 177)
[11] Huang H G, Wang Y M, Chen L, et al.Study on formation and corrosion resistance of amorphous alloy in U-Co system[J]. Acta Metall. Sin., 2015, 51: 623
[11] (黄火根, 王英敏, 陈亮等. U-Co系非晶合金的形成与耐蚀性研究[J]. 金属学报, 2015, 51: 623)
[12] Huang H G, Ke H B, Wang Y M, et al.Stable U-based metallic glasses[J]. J. Alloys Compd., 2016, 684: 75
[13] Bleiberg M L, Jones L J, Lustman B.Phase changes in pile-irradiated uranium-base alloys[J]. J. Appl. Phys., 1956, 27: 1270
[14] Elliott R O, Giessen B C.On the formation of metallic glasses based on U, Np or Pu[J]. Acta Metall., 1982, 30: 785
[15] Huang H G, Ke H B, Zhang P, et al.Effect of minor alloying on the glass formation of U-based alloys[J]. J. Alloys Compd., 2016, 688: 599
[16] Yang Y, Zeng J F, Ye J C, et al.Structural inhomogeneity and anelastic deformation in metallic glasses revealed by spherical nanoindentation[J]. Appl. Phys. Lett., 2010, 97: 261905
[17] Ma Y, Peng G J, Feng Y H, et al.Nanoindentation investigation on the creep mechanism in metallic glassy films[J]. Mater. Sci. Eng., 2016, A651: 548
[18] Huang Y J, Chiu Y L, Shen J, et al.Indentation creep of a Ti-based metallic glass[J]. J. Mater. Res., 2009, 24: 993
[19] Pang J J, Tan M J, Liew K M, et al.Nanoindentation study of size effect and loading rate effect on mechanical properties of a thin film metallic glass Cu49.3Zr50.7 [J]. Physics, 2012, 407B: 340
[20] Li H, Ngan A H W. Size effects of nanoindentation creep[J]. J. Mater. Res., 2004, 19: 513
[21] Schuh C A, Lund A C, Nieh T G.New regime of homogeneous flow in the deformation map of metallic glasses: elevated temperature nanoindentation experiments and mechanistic modeling[J]. Acta Mater., 2004, 52: 5879
[22] Spaepen F.A microscopic mechanism for steady state inhomogeneous flow in metallic glasses[J]. Acta Metall., 1977, 25: 407
[23] Argon A S.Plastic deformation in metallic glasses[J]. Acta Metall., 1979, 27: 47
[24] Cao Z H, Li P Y, Meng X K.Nanoindentation creep behaviors of amorphous, tetragonal, and bcc Ta films[J]. Mater. Sci. Eng., 2009, A516: 253
[25] Zhang H W, Jing X N, Subhash G, et al.Investigation of shear band evolution in amorphous alloys beneath a Vickers indentation[J]. Acta Mater., 2005, 53: 3849
[26] Machaka R, Derry T E, Sigalas L.Room temperature nanoindentation creep of hot-pressed B6O[J]. Mater. Sci. Eng., 2014, A607: 521
[1] HUANG Huogen, ZHANG Pengguo, ZHANG Pei, WANG Qinguo. Comparison of Glass Forming Ability Between U-Co and U-Fe Base Systems[J]. 金属学报, 2020, 56(6): 849-854.
[2] LIU Jizhao, HUANG Hefei, ZHU Zhenbo, LIU Awen, LI Yan. Numerical Simulation of Nanohardness in Hastelloy N Alloy After Xenon Ion Irradiation[J]. 金属学报, 2020, 56(5): 753-759.
[3] WU Jing,LIU Yongchang,LI Chong,WU Yuting,XIA Xingchuan,LI Huijun. Recent Progress of Microstructure Evolution and Performance of Multiphase Ni3Al-Based Intermetallic Alloy with High Fe and Cr Contents[J]. 金属学报, 2020, 56(1): 21-35.
[4] HU Bin,LI Shusuo,PEI Yanling,GONG Shengkai,XU Huibin. Influence of Small Misorientation from <111> on Creep Properties of a Ni-Based Single Crystal Superalloy[J]. 金属学报, 2019, 55(9): 1204-1210.
[5] Sensen HUANG,Yingjie MA,Shilin ZHANG,Min QI,Jiafeng LEI,Yaping ZONG,Rui YANG. Influence of Alloying Elements Partitioning Behaviors on the Microstructure and Mechanical Propertiesin α+β Titanium Alloy[J]. 金属学报, 2019, 55(6): 741-750.
[6] Wenshu TANG,Junfeng XIAO,Yongjun LI,Jiong ZHANG,Sifeng GAO,Qing NAN. Effect of Re-Heat Rejuvenation Treatment on γ′ Microstructure of Directionally SolidifiedSuperalloy Damaged by Creep[J]. 金属学报, 2019, 55(5): 601-610.
[7] JIN Chenri, YANG Suyuan, DENG Xueyuan, WANG Yangwei, CHENG Xingwang. Effect of Nano-Crystallization on Dynamic Compressive Property of Zr-Based Amorphous Alloy[J]. 金属学报, 2019, 55(12): 1561-1568.
[8] LU Shijie, WANG Hu, DAI Peiyuan, DENG Dean. Effect of Creep on Prediction Accuracy and Calculating Efficiency of Residual Stress in Post Weld Heat Treatment[J]. 金属学报, 2019, 55(12): 1581-1592.
[9] Pengyue ZHAO, Yongbo GUO, Qingshun BAI, Feihu ZHANG. Research of Surface Defects of Polycrystalline Copper Nanoindentation Based on Microstructures[J]. 金属学报, 2018, 54(7): 1051-1058.
[10] Guodong HU, Pei WANG, Dianzhong LI, Yiyi LI. Precipitate Evolution in a Modified 25Cr-20Ni Austenitic Heat Resistant Stainless Steel During CreepRupture Test at 750 ℃[J]. 金属学报, 2018, 54(11): 1705-1714.
[11] Yinhui ZHANG, Qiang FENG. Effects of W on Creep Behaviors of Novel Nb-Bearing Austenitic Heat-Resistant Cast Steels at 1000 ℃[J]. 金属学报, 2017, 53(9): 1025-1037.
[12] Dianguo MA,Yingmin WANG,Kunio YUBUTA,Yanhui LI,Wei ZHANG. Effect of Co Content on the Structure and Magnetic Properties of Melt-Spun Fe55-xCoxPt15B30 Alloys[J]. 金属学报, 2017, 53(5): 609-614.
[13] Jihou LIU,Hongyun ZHAO,Zhuolin LI,Xiaoguo SONG,Hongjie DONG,Yixuan ZHAO,Jicai FENG. Microstructures and Mechanical Properties of Cu/Sn/Cu Structure Ultrasonic-TLP Joint[J]. 金属学报, 2017, 53(2): 227-232.
[14] Huogen HUANG,Hongyang XU,Pengguo ZHANG,Yingmin WANG,Haibo KE,Pei ZHANG,Tianwei LIU. U-Cr Binary Alloys with Anomalous Glass-Forming Ability[J]. 金属学报, 2017, 53(2): 233-238.
[15] Xiancui LIU, Ye PAN, Zhijiao TANG, Weiqiao HE, Tao LU. Microstructure Control and High Temperature Properties of Al-Mn-Based Alloys[J]. 金属学报, 2017, 53(11): 1487-1494.
No Suggested Reading articles found!