Please wait a minute...
Acta Metall Sin  2016, Vol. 52 Issue (2): 129-134    DOI: 10.11900/0412.1961.2015.00193
Orginal Article Current Issue | Archive | Adv Search |
Biao YANG1,Bailin ZHENG1(),Xingjian HU1,Pengfei HE1,Zhufeng YUE2
1 Institute of Applied Mechanics, School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China
2 School of Mechanics and Civil&Architecture, Northwestern Polytechnical University, Xi'an 710072, China
Download:  HTML  PDF(5760KB) 
Export:  BibTeX | EndNote (RIS)      

Nanoindentation of Ni-based single crystal alloy which has a void defect is simulated by the molecular dynamics method. Three models with different voids which have a same radius but different depth (H=1.5 nm, 3.0 nm, 4.5 nm) are contrasted to the perfect model respectively. The influence of a void and misfit dislocation on nanoindentation process are analyzed using center symmetry parameter. Nucleation and growth of dislocation on various indentation depth are researched simultaneously. After relaxation, misfit dislocations occur in all models, which indicates that the void does not affect the generation of misfit dislocation in γ/γ' phase. The indentation load-depth curves show the shallow void (H=1.5 nm) has the greatest influence on nanoindentation. The results demonstrate that the void has two different ways to affect the nanoindentation process. Initially, the void softens the materials when the indentation depth is less than 0.375 nm. However, it will hinder the growth of dislocations because of a kind of surface force, which causes the increase of indentation load while the indentation depth is between 0.375 nm and 0.567 nm. The collapse of a void absorbs the strain energy, so the amount of stacking faults nucleation in γ phase in model with the shallow void is less than which in the perfect model. The indentation load-depth curves show that the indentation load in the H=1.5 nm model is larger than load in the perfect model at 1.263 nm indentation depth. But when the void collapses completely, dislocations tangle around the original location of the void and more stacking faults generate comparing to the perfect model at the same indentation depth h=1.743 nm. So the indentation load declines and becomes smaller than load in perfect model. If the void locates at the interface of γ/γ' phase (H=3.0 nm), it influence the nanoindentation process later than H=1.5 nm model. Dissociation of misfit dislocations is observed when the indentation depth arrives the maximum value 1.748 nm in H=3.0 nm model. Stairs form on the surface of γ phase because of the dissociation of misfit dislocations. There is almost no influence on the nanoindentation of Ni-based single crystal alloy when the void locates in the γ' phase (H=4.5 nm).

Key words:  nanoindentation      molecular dynamics      void      misfit dislocation     
Received:  03 April 2015     
Fund: Supported by Major International (Regional) Joint Research Program of China (No.51210008)

Cite this article: 

Biao YANG,Bailin ZHENG,Xingjian HU,Pengfei HE,Zhufeng YUE. EFFECT OF VOID ON NANOINDENTATION PROCESS OF Ni-BASED SINGLE CRYSTAL ALLOY. Acta Metall Sin, 2016, 52(2): 129-134.

URL:     OR

Fig.1  Sketch of model (R—radius of indenter, H—depth of void, r—radius of void)
Fig.2  Schematics of simulation models of nanoindentation
Fig.3  Center symmetry parameters (P) of four models after relaxation
Fig.4  Indentation load-depth curves of four models
Fig.5  Maps of P at different indentation depths in Fig.4 for perfect model (a1, b1, c1, d1, e1, f1) and H=1.5 nm model (a2, b2, c2, d2, e2, f2)
Fig.6  Maps of P for H=3.0 nm model at different indentation depth
Fig.7  Maps of P at indentation depth h=1.748 nm
Fig.8  Map of P of γ phase surface at indentation depth h=1.748 nm in H=3.0 nm model
[1] Nathal M V, MacKay R A, Garlick R G.Mater Sci Eng, 1985; 75: 195
[2] Probst-Hein M, Dlouhy A, Eggeler G.Acta Mater, 1999; 47: 2497
[3] Kamaraj M.Sadhana, 2003; 28: 115
[4] Zhu T, Wang C.Phys Rev, 2005; 72B: 14111
[5] Pyczak F, Devrient B, Neuner F C, Mughrabi H.Acta Mater, 2005; 53: 3879
[6] Zhu T, Wang C Y.Chin Phys, 2006; 15: 2087
[7] Xie H, Wang C, Yu T.Modelling Simul Mater Sci Eng, 2009; 17: 55007
[8] Wu W P, Guo Y F, Wang Y S, Mueller R, Gross D.Philos Mag, 2011; 91: 357
[9] Heckl A, Neumeier S, Göken M, Singer R F.Mater Sci Eng, 2011; A528: 3435
[10] Schuh C A.Mater Today, 2006; 9(5): 32
[11] Szlufarska I.Mater Today, 2006; 9(5): 42
[12] Landman U, Luedtke W D, Burnham N, Colton R.Science, 1990; 248: 454
[13] Belak J, Boercker D B, Stowers I F.Mrs Bull, 1993; 18: 55
[14] Liang H Y, Woo C H, Huang H, Ngan A, Yu T X.Philos Mag, 2003; 83: 3609
[15] Quan W L, Li H X, Ji L, Zhao F, Du W, Zhou H D, Chen J M.Acta Phys Sin, 2010; 59: 5687
[15] (权伟龙, 李红轩, 吉利, 赵飞, 杜雯, 周惠娣, 陈建敏. 物理学报, 2010; 59: 5687)
[16] Hu X J, Zheng B L, Hu T Y, Yang B, He P F, Yue Z F.Acta Phys Sin, 2014; 63(17): 218
[16] (胡兴健, 郑百林, 胡腾越, 杨彪, 贺鹏飞, 岳珠峰. 物理学报, 2014; 63(17): 218)
[17] Yu W, Shen S.Compos Mater Sci, 2009; 46: 425
[18] Yang Q L, Zhang G C, Xu A G, Zhao Y H, Li Y J.Acta Phys Sin, 2008; 57: 940
[18] (杨其利, 张广财, 许爱国, 赵艳红, 李英骏. 物理学报, 2008; 57: 940)
[19] Shan D B, Yuan L, Xu Z H, Guo B.J Nanosci Nanotechnol, 2009; 9: 1234
[20] Tan C M, Jeng Y R.Int J Solids Struct, 2009; 46: 1884
[21] Zhu P Z, Hu Y Z, Wang H.Sci China Phys Mech Astron, 2010; 53: 1716
[22] Njeim E K, Bahr D F.Scr Mater, 2010; 62: 598
[23] Fang T H, Chang W Y, Huang J J.Acta Mater, 2009; 57: 3341
[24] Hoffmann K H, Schreiber M. Computational Physics.Berlin Heidelberg: Springer-Verlag, 1996: 268
[25] Mishin Y, Farkas D, Mehl M J, Papaconstantopoulos D A.Phys Rev, 1999; 59B: 3393
[1] LI Meilin, LI Saiyi. Motion Characteristics of <c+a> Edge Dislocation on the Second-Order Pyramidal Plane in Magnesium Simulated by Molecular Dynamics[J]. 金属学报, 2020, 56(5): 795-800.
[2] LIU Jizhao, HUANG Hefei, ZHU Zhenbo, LIU Awen, LI Yan. Numerical Simulation of Nanohardness in Hastelloy N Alloy After Xenon Ion Irradiation[J]. 金属学报, 2020, 56(5): 753-759.
[3] LI Yuancai, JIANG Wugui, ZHOU Yu. Effect of Nanopores on Tensile Properties of Single Crystal/Polycrystalline Nickel Composites[J]. 金属学报, 2020, 56(5): 776-784.
[4] LI Yuancai, JIANG Wugui, ZHOU Yu. Effect of Temperature on Mechanical Propertiesof Carbon Nanotubes-Reinforced Nickel Nano-Honeycombs[J]. 金属学报, 2020, 56(5): 785-794.
[5] MA Xiaoqiang,YANG Kunjie,XU Yuqiong,DU Xiaochao,ZHOU Jianjun,XIAO Renzheng. Molecular Dynamics Simulation of DisplacementCascades in Nb[J]. 金属学报, 2020, 56(2): 249-256.
[6] ZHOU Xia,LIU Xiaoxia. Mechanical Properties and Strengthening Mechanism of Graphene Nanoplatelets Reinforced Magnesium Matrix Composites[J]. 金属学报, 2020, 56(2): 240-248.
[7] Junqin SHI,Kun SUN,Liang FANG,Shaofeng XU. Stress Relaxation and Elastic Recovery of Monocrystalline Cu Under Water Environment[J]. 金属学报, 2019, 55(8): 1034-1040.
[8] Qingdong ZHANG,Shuo LI,Boyang ZHANG,Lu XIE,Rui LI. Molecular Dynamics Modeling and Studying of Micro-Deformation Behavior in Metal Roll-Bonding Process[J]. 金属学报, 2019, 55(7): 919-927.
[9] Sensen HUANG,Yingjie MA,Shilin ZHANG,Min QI,Jiafeng LEI,Yaping ZONG,Rui YANG. Influence of Alloying Elements Partitioning Behaviors on the Microstructure and Mechanical Propertiesin α+β Titanium Alloy[J]. 金属学报, 2019, 55(6): 741-750.
[10] Aidong TU, Chunyu TENG, Hao WANG, Dongsheng XU, Yun FU, Zhanyong REN, Rui YANG. Molecular Dynamics Simulation of the Structure and Deformation Behavior of γ/α2 Interface in TiAl Alloys[J]. 金属学报, 2019, 55(2): 291-298.
[11] Jin WANG, Liming YU, Chong LI, Yuan HUANG, Huijun LI, Yongchang LIU. Effect of Different Temperatures on He Atoms Behavior inα-Fe with and without Dislocations[J]. 金属学报, 2019, 55(2): 274-280.
[12] Haifeng ZHANG, Haile YAN, Nan JIA, Jianfeng JIN, Xiang ZHAO. Exploring Plastic Deformation Mechanism of MultilayeredCu/Ti Composites by Using Molecular Dynamics Modeling[J]. 金属学报, 2018, 54(9): 1333-1342.
[13] Pengyue ZHAO, Yongbo GUO, Qingshun BAI, Feihu ZHANG. Research of Surface Defects of Polycrystalline Copper Nanoindentation Based on Microstructures[J]. 金属学报, 2018, 54(7): 1051-1058.
[14] Dandan FAN, Junfeng XU, Yanan ZHONG, Zengyun JIAN. Effect of Superheated Temperature and Cooling Rate on the Solidification of Undercooled Ti Melt[J]. 金属学报, 2018, 54(6): 844-850.
[15] Yingjun GAO, Yujiang LU, Lingyi KONG, Qianqian DENG, Lilin HUANG, Zhirong LUO. Phase Field Crystal Model and Its Application for Microstructure Evolution of Materials[J]. 金属学报, 2018, 54(2): 278-292.
No Suggested Reading articles found!