Please wait a minute...
Acta Metall Sin  2009, Vol. 45 Issue (7): 781-787    DOI:
论文 Current Issue | Archive | Adv Search |
SOME CRITICAL ISSUES IN CREEP AND FRACTURE ASSESSMENT AT HIGH TEMPERATURE
TU Shandong(TU Shan--Tung); XUAN Fuzhen; WANG Weize
Key Lab of Safety Science of Pressurized System; Ministry of Education; School of Mechanical
and Power Engineering; East China University of Science and Technology; Shanghai 200237
Cite this article: 

TU Shandong(TU Shan--Tung) XUAN Fuzhen WANG Weize. SOME CRITICAL ISSUES IN CREEP AND FRACTURE ASSESSMENT AT HIGH TEMPERATURE. Acta Metall Sin, 2009, 45(7): 781-787.

Download:  PDF(1285KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The paper briefs the current trends of the construction of high temperature plants. The need of higher efficiency and lower consumption of resources has led to higher operation parameters of the plants. It is thus believed that the safety of high temperature installations is a critical issue that could hardly be circumvented in the period of post--industrial civilization. In order to achieve a reliable design and manufacture and safe operation of the high temperature plants, some fundamental issues concerning life prediction and failure assessment should be studied. Being aware of some very slow chemical reactions occurred in the high temperature materials after a certain period of service time, it is suggested that the physico--chemical kinetics of the high temperature materials during the slow creep process should be established so that the inaccuracy of life extrapolation techniques based on the conventional Arrhenius equation could be avoided. As the actual material in a component is generally subjected to a complex stress state and the machining of a standard fracture specimen from the component is normally not possible, high temperature fracture theory under constraints should be developed to allow the estimation of fracture properties of the material. Furthermore, a unified failure assessment diagram that includes the local fracture property, the limit loading capacity and the damage law is proposed in order to assess the structural safety under complex loading and environment cases.

Key words:  creep      fracture      aging      physico--chemical kinetics      constraint      failure assessment     
Received:  15 April 2009     
ZTFLH: 

TG113.2

 
Fund: 

Supported by National Natural Science Foundation of China (Nos.50835003 and 10772067)

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2009/V45/I7/781

[1] Tu S T. High Temperature Structural Integrity. Beijing: Science Press, 2003: 1
(涂善东. 高温结构完整性原理. 北京:科学出版社, 2003:1)
[2] Magistri L, Traverso A, Cerutti F, Bozzolo M, Costamagna P, Massardo A F. Fuel Cells, 2005; 5: 80
[3] Yan M G, Wu X R, Zhu Z S. Aeronaut Manuf Technol, 2003; (12): 19
(颜鸣皋, 吴学仁, 朱知寿. 航空制造技术, 2003; (12): 19)
[4] Ryskamp J M. Next Generation Nuclear Plant–High– Level Functions and Requirements, INEEL/EXT–03– 01163, Idaho Falls: Idaho National Engineering and Environmental Laboratory, 2003, doi 10.2172/910744
[5] Tu S T. Front Mech Eng China, 2007; 2: 375
[6] Viswanathan R, Stringer J. J Eng Mater Technol, 2000; 122: 246
[7] Liang X L, Headrick W L, Dharani L R, Zhao S M. Eng Failure Anal, 2007; 14: 1233
[8] ASME Code Section III, Rules for Construction of Nuclear Power Plant Components, Division 1, Sub–section NH. New York: ASME, 1995
[9] Yagi K. Int J Pressure Vesseles Piping, 2008; 85: 22
[10] Briner B G, Doering M. Science, 1997; 278: 257
[11] Heinrich A J, Lutz C P, Cupta J A, Eigler D M. Science, 2002; 298: 1381
[12] Bhadeshia H K D H, Strang A, Gooch D J. Int Mater Rev, 1998; 43: 45
[13] Shlyk–Kerner O, Samish I, Kaftan D, Holland N, Maruthi Sai P S, Kless H, Scherz A. Nature, 2006; 442: 827
[14] Sih G C, Tu S T. In: Sih G C, Tu S T, Wang Z D eds., Structural Integrity and Materials Aging. Shanghai: East China University of Science and Technology Press, 2003: 1
[15] Tu S T, Wang W Z. In: 10000 Puzzles in Science (Chemistry Volume). Beijing: Science Press, 2009: 253
(涂善东, 王卫泽. 10000个科学难题--化学卷. 北京: 科学出版社, 2009: 253)
[16] Wells A A, McBride F H. Can Metall Q, 1967; 6: 347
[17] Siverns M J, Price A T. Nature, 1970; 228: 760
[18] Wang Y L, Shen F Z, Tu S T. Eng Fract Mech, 1994; 47: 39
[19] Landes J D, Begley J A. ASTM STP590. Philadelphia: ASTM, 1976: 128
[20] Nikbin K M, Webster G A, Turner C E. ASTM STP601. Philadelphia: ASTM, 1976: 47
[21] Saxena A. ASTM STP803. Philadelphia: ASTM, 1980. 131
[22] Ohji K, Kubo S. In: Ohtani R, Ohnami M, Inoue T eds., High Temperature Creep–Fatigue, London: Elsevier, 1988: 91
[23] Saxena A. In: Nair S V, Tien J K, Bates R C, Buck O eds., Fracture Mechanics: Microstructure and Micromechanisms, Metals Park: ASM Int., 1989: 283
[24] Tu S T, Wang Z D, Chen J J. In: Sih G C, Nobile L eds., Restoration, Recycling and Rejuvenation Technology for Engineering and Architecture Application, Rome: Aracne, 2004: 23
[25] Lee J S, Jang J, Lee B W, Choi Y, Lee S G, Kwon D. Acta Mater, 2006; 54: 1101
[26] Chao Y J, Zhang X H. ASTM STP1296, Philadelphia: ASTM, 1997. 41
[27] Williams M L. ASME J Appl Mech, 1957; 24: 111
[28] O’Dowd N P, Shih C F. J Mech Phys Solids, 1991; 38: 989
[29] Neimitz A, Galkiewicz J. Int J Pressure Vessels Piping, 2006; 83: 42
[30] Beremin F M. Metall Trans, 1983; 14A: 2277
[31] Gao X, Dodds R H. Eng Fract Mech, 2001; 68: 263
[32] Budden P J, Ainsworth R A. Int J Fracture, 1999; 97: 237
[33] Dean D W, Gladwin D N. Int J Pressure Vessels Piping, 2007; 84: 378
[34] Nguyen B N, Onck P, Giessen E. Eng Fract Mech, 2000; 65: 467
[35] Tu S T. In: Eleventh Five–Year Strategic Plan of National Natural Science Foundation of China. Beijing: Science Press, 2006: 74
(涂善东. 国家自然科学基金委员会十一五战略研究规划. 北京: 科学出版社, 2006: 74)
[36] Shih C, Asaro R J. ASME J Appl Mech, 1988; 55: 299
[37] Shih C, Asaro R J. ASME J Appl Mech, 1989; 56: 763
[38] Shih C, Asaro R J, O’Dowd N P. ASME J Appl Mech, 1991; 58: 450
[39] Qiao Y. Scr Mater, 2003; 49: 491
[40] Tu S T. Theor Appl Fract Mech, 2002; 38: 203
[41] Xuan F Z, Tu S T, Wang Z D. Int J Fract, 2004; 126: 267
[42] Chen J J, Tu S T, Xuan F Z, Wang Z D. In: Sih G C, Vu–Khanh T eds., Materials for Safety and Health, Mesoscopic and Multiscale Consideration in Modern Science and Engineering, Montreal: University of Quebec, 2005: 99
[43] Chen H R, Wang L M, Karihaloo B L, Williams F W. Comput Mater Sci, 1998; 12: 1
[44] Kim Y J, Kim J S, Schwalbe K H, Kim Y J. Fatigue Fract Eng Mater Struct, 2003; 6: 683
[45] Xuan F Z, Tu S T, Wang Z D. Eng Fract Mech, 2005; 72: 2602
[46] Xuan F Z, Tu S T, Wang Z D. Adv Mech, 2005; 35: 391
(轩福贞, 涂善东, 王正东. 力学进展, 2005; 35: 391)
[47] R5. Assessment Procedure for the High Temperature Response of Structures. Procedure R5, Issue 2, Gloucester: Nuclear Electric Ltd., 1997
[48] Drubay B, Moulin D, Faidy C, Bhandari S. Defect Assessment Procedure: A French Approach. ASME PVP 266, New York: ASME, 1993: 113
[49] PD6539. 1994 Guide to Methods for the Assessment of the Influence of Crack Growth on the Significance of Defects in Components Operating at High Temperatures. London: BSI, 1994
[50] British Standards BS 7910. 1999, Guide to Methods of Assessing the Acceptability of Flaws in Fusion Welded Structures. London: BSI, 1999
[51] Concari S, Fairman A. Int J Pressure Vessels Piping, 2001; 78: 1031
[52] http://www.eurofitnet.org/
[53] Wakai T, Poussard C, Drubay B. Nucl Eng Des, 2003; 224: 245
[54] Tu S T, Segle P, Gong J M. Int J Pressure Vessels Piping, 2004; 81: 199
[55] Xuan F Z, Tu S T, Wang Z D. Fatigue Fract Mater Struct, 2006; 29: 157
[56] GB/T 19624–2004. Safety Assessment for In–Service Pressure Vessels Containing Defects, General Administratio of Quality Supervision, Inspection and Quarantine of the Peoples’s Republic of China. 2005
(中华人民共和国国家标准GB/T19624--2004, 国家质量监督检验检疫总局, 2005)
[57] Dowling A R, Townly C H A. Int J Pressure Vessels & Piping, 1975; 3: 77
[58] R6 Assessment of the Integrity of Structures Containing Defects. Procedure R6–Revision 4, Gloucester, UK: Nuclear Electric Ltd, 2000
[59] Wichman, K, Lee S. Int J Pressure Vessels Piping, 1990; 43: 57
[60] Dong J L, Fu J Y, Yu S Y, Yin D J. Chin High Technol Lett, 2000; (10): 81
(董建令, 傅激扬, 于溯源, 殷德健. 高技术通讯, 2000; (10):81)
[61] Ainsworth R A, Hooton D G, Green G. Eng Fract Mech, 1999; 62: 95
[62] Davies C M, O’Dowd N P, Dean D W, Nikbin K M, Ainsworth R A. Int J of Pressure Vessels Piping, 2003; 80: 541
[63] Budden P J. Eng Fract Mech, 2006; 73: 537
[64] Xuan F Z, Tu S T, Wang Z D. Chin J Mech Eng, 2004; 17: 537
[65] Tu S T, Xuan F Z. Key Eng Mater, 2005; 297–300: 428

[1] CHEN Jia, GUO Min, YANG Min, LIU Lin, ZHANG Jun. Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1209-1220.
[2] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[3] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] FENG Qiang, LU Song, LI Wendao, ZHANG Xiaorui, LI Longfei, ZOU Min, ZHUANG Xiaoli. Recent Progress in Alloy Design and Creep Mechanism of γ'-Strengthened Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1125-1143.
[5] LIANG Kai, YAO Zhihao, XIE Xishan, YAO Kaijun, DONG Jianxin. Correlation Between Microstructure and Properties of New Heat-Resistant Alloy SP2215[J]. 金属学报, 2023, 59(6): 797-811.
[6] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
[7] WANG Bin, NIU Mengchao, WANG Wei, JIANG Tao, LUAN Junhua, YANG Ke. Microstructure and Strength-Toughness of a Cu-Contained Maraging Stainless Steel[J]. 金属学报, 2023, 59(5): 636-646.
[8] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[9] MA Guonan, ZHU Shize, WANG Dong, XIAO Bolv, MA Zongyi. Aging Behaviors and Mechanical Properties of SiC/Al-Zn-Mg-Cu Composites[J]. 金属学报, 2023, 59(12): 1655-1664.
[10] GONG Xiangpeng, WU Cuilan, LUO Shifang, SHEN Ruohan, YAN Jun. Effect of Natural Aging on Artificial Aging of an Al-2.95Cu-1.55Li-0.57Mg-0.18Zr Alloy at 160oC[J]. 金属学报, 2023, 59(11): 1428-1438.
[11] LI Xiaolin, LIU Linxi, LI Yating, YANG Jiawei, DENG Xiangtao, WANG Haifeng. Mechanical Properties and Creep Behavior of MX-Type Precipitates Strengthened Heat Resistant Martensite Steel[J]. 金属学报, 2022, 58(9): 1199-1207.
[12] GENG Yaoxiang, TANG Hao, XU Junhua, ZHANG Zhijie, YU Lihua, JU Hongbo, JIANG Le, JIAN Jianglin. Formability and Mechanical Properties of High-Strength Al-(Mn, Mg)-(Sc, Zr) Alloy Produced by Selective Laser Melting[J]. 金属学报, 2022, 58(8): 1044-1054.
[13] GU Ruicheng, ZHANG Jian, ZHANG Mingyang, LIU Yanyan, WANG Shaogang, JIAO Da, LIU Zengqian, ZHANG Zhefeng. Fabrication of Mg-Based Composites Reinforced by SiC Whisker Scaffolds with Three-Dimensional Interpenetrating-Phase Architecture and Their Mechanical Properties[J]. 金属学报, 2022, 58(7): 857-867.
[14] WU Jin, YANG Jie, CHEN Haofeng. Fracture Behavior of DMWJ Under Different Constraints Considering Residual Stress[J]. 金属学报, 2022, 58(7): 956-964.
[15] GAO Chuan, DENG Yunlai, WANG Fengquan, GUO Xiaobin. Effect of Creep Aging on Mechanical Properties of Under-Aged 7075 Aluminum Alloy[J]. 金属学报, 2022, 58(6): 746-759.
No Suggested Reading articles found!