Please wait a minute...
Acta Metall Sin  2009, Vol. 45 Issue (7): 788-800    DOI:
论文 Current Issue | Archive | Adv Search |
INTERFACIAL EFFECTS OF FATIGUE CRACKING IN METALLIC MATERIALS
ZHANG Zhefeng; ZHANG Peng; TIAN Yanzhong; ZHANG Qingke; QU Shen; ZOU Hefei; DUAN Qiqiang; LI Shouxin; WANG Zhongguang
Shenyang National Laboratory for Materials Science; Institute of Metal Research; Chinese Academy of Sciences; Shenyang 110016
Cite this article: 

ZHANG Zhefeng ZHANG Peng TIAN Yanzhong ZHANG Qingke QU Shen ZOU Hefei DUAN Qiqiang LI Shouxin WANG Zhongguang. INTERFACIAL EFFECTS OF FATIGUE CRACKING IN METALLIC MATERIALS. Acta Metall Sin, 2009, 45(7): 788-800.

Download:  PDF(2306KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Interfacial fatigue cracking behaviors along large--angle grain boundaries (GBs), twin boundaries (TBs), phase boundaries (PBs) and joint interfaces in metallic materials were summarized. It is found that the resistance to fatigue crack initiation decreases in the order of low--angle GBs, persistent slip bands and the large--angle GBs in pure Cu. For annealing TBs, fatigue cracking initiation strongly depends on the stacking fault energy (SFE) in Cu alloys. With decreasing SFE, fatigue cracking along TBs becomes easy. In Cu--Ag binary alloys, the misorientation across GBs or PBs plays an important role in the fatigue cracking, and large misorientation often makes the final fatigue cracking. For the Cu/solder joint interface, the interfacial fatigue cracking modes are affected by the solders and aging time. In Sn--Ag/Cu solder joints, fatigue crack normally nucleates along the interface between the Sn--Ag solder and the intermetallics compounds (IMCs); however, for Sn--Bi/Cu solder joints, brittle interfacial fatigue cracking always occurs along the interface between Cu and the IMCs due to the Bi segregation after aging for a long time.

Key words:  grain boundary      twin boundary      phase boundary      interconnect interface      fatigue cracking     
Received:  01 April 2009     
ZTFLH: 

TG111.8

 
Fund: 

Supported by National Natural Science Foundation of China (Nos.50571104 and 50890173),  National Outstanding Young Scientist Foundation of China (No.50625103)  and “Hundred of Talents Project” of Chinese Academy of Sciences

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2009/V45/I7/788

[1] Suresh S, translated by Wang Z G, et al. Fatigue of Materials. Beijing: National Defence Industry Press, 1999: 1
(Suresh S 著; 王中光, 等译. 材料的疲劳. 北京: 国防工业出版社, 1999: 1)
[2] Albert W A J. Arch Mineral, Geognosie, Bergbau Huttenkunde, 1838; 10: 215
[3] Ewing J A, Humfrey J C. Philos Trans R Soc London, 1903; 200A: 241
[4] Schmid E, Boas W. Plasticity of Crystals. London: Chapman and Hall, 1968: 1
[5] Seeger A. Dislocation and Mechanical Properties of Crystals. New York: John Wiley, 1957: 1
[6] Honeycombe RWK. Plastic Deformation of Metals. London: Cambridge Press, 1969: 1
[7] Klesnil M, Lukas P. Fatigue of Materials. 3rd Ed., Amsterdam: the Netherlands, 1992: 1
[8] Thompson N,Wadsworth N J, Louat N. Philos Mag, 1956; 1: 113
[9] Essmann U, Gosele U, Mughrabi H. Philos Mag, 1981; 44: 405
[10] Basinski Z S, Pascual R, Basinski S J. Acta Metall, 1983; 31: 591
[11] Hunsche A, Neumann P. Acta Metall, 1986; 34: 207
[12] Kim W K, Laird C. Acta Metall, 1978; 26: 789
[13] Liu W, Bayerlein M, Mughrabi H, Day A, Quested P N. Acta Metall Mater, 1992; 40: 1763
[14] Watanabe T. Res Mech, 1984; 11: 47
[15] Watanabe T, Fujii H, Oikawa H, Arai K I. Acta Metall, 1989; 37: 47
[16] Aust KT, Erb U, Palumbo G. Mater Sci Eng, 1994; A176: 329
[17] Pan Y, Adams B L, Olson T, Panayotou N. Acta Mater, 1996; 44: 4685
[18] Adams B L, Zhao JW, Ohara D. Acta Metall Mater, 1990; 38: 953
[19] Lu L, Shen Y F, Chen X H, Qian L H, Lu K. Science, 2004; 304: 422
[20] Shen Y F, Lu L, Lu K. Scr Mater, 2005; 52: 989
[21] Zhang Z F, Wang Z G. Mater Sci Eng, 1999; A271: 449
[22] Hu Y M, Wang Z G. Scr Mater, 1996; 34: 1019
[23] Zhang Z F, Wang Z G, Li S X. Fatigue Fract Eng Mater Struct, 1998; 21: 1307
[24] Zhang Z F, Wang Z G. Acta Mater, 2003; 51: 367
[25] Zhang Z F, Wang Z G, Hu Y M. Mater Sci Eng, 1999; A269: 136
[26] Zhang Z F, Wang Z G. Prog Mater Sci, 2008; 53: 1025
[27] Zhang Z F, Li X W, Su H H, Wang Z G. J Mater Sci Technol, 1998; 14: 211
[28] Zhang Z F, Wang Z G, Eckert J. J Mater Res, 2003; 18: 1031
[29] Figueroa J C, Laird C. Mater Sci Eng, 1983; 60: 45
[30] Huang H L, Ho N J. Mater Sci Eng, 2000; A293: 7
[31] Mughrabi H, Ackermann F, Herz K. ASTM STP, 1983; 811: 5
[32] Polak J, Liskutin P. Fatigue Fract Eng Mater Struct, 1990; 13: 119
[33] Polak J, Vasek A, Obrtlik K. Fatigue Fract Eng Mater Struct, 1996; 19: 147
[34] Boettner R C, McEvily A J, Liu Y C. Philos Mag, 1964; 10: 95
[35] Zhang P, Duan Q Q, Li S X, Zhang Z F. Philos Mag, 2008; 88: 2487
[36] Qu S, Zhang P, Wu S D, Zang Q S, Zhang Z F. Scr Mater, 2008; 59: 1131
[37] Hirth J P, Lothe J. In: Hirth J P, Lothe J eds., Theory of Dislocations, 2nd Ed., New York: John Wiley and Sons Inc., 1982: 306
[38] Murr L E. In: Murr L E ed., Interfacial Phenomena in Metals and Alloys, MA: Addison–Wesley Publishing Company, 1975: 145
[39] Han K, Vasquez A A, Xin Y, Kalu P N. Acta Mater, 2003; 51: 767
[40] Rao G, Howe J M, Wynblatt P. Scr Metall Mater, 1994; 30: 731
[41] Tian Y Z, Zhang Z F. Mater Sci Eng, 2009; A508: 206
[42] Stolarz J, Madelaine–Dupuich O, Magnin T. Mater Sci Eng, 2001; A299: 275
[43] Lefranc P, Doquet V, Gerland M, Sarrazin–Baudoux C. Acta Mater, 2008; 56: 4450
[44] Motoyashiki Y, Br¨uckner–Foit A, Sugeta A. Eng Fract Mech, 2008; 75: 768
[45] Alvarez–Armas I, Marinelli M C, Malarr´?a J A, Degallaix S, Armas A F. Int J Fatigue, 2007; 29: 758
[46] Abtew M, Selvaduray G. Mater Sci Eng, 2000; R27: 95
[47] Zhang Q K, Zou H F, Zhang Z F. J Electronic Mater, 2009, in press
[48] Zhu Q S, Zhang Z F, Shang J K, Wang Z G. Mater Sci Eng, 2006; A435–436: 588
[49] Zou H F, Zhang Q K, Zhang Z F. Scr Mater, 2009; 61: 308
[50] Lee H T, Chen M H, Jao H M, Liao T L. Mater Sci Eng, 2003; A358: 134
[51] Zhang Q K, Zhang Z F. J Alloy Compd, 2009, under review [52] Glazer J. Inter Mater Rev, 1995; 40(2): 65
[53] Zhu Q S. PhD Thesis, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2008
(祝清省. 中国科学院金属研究所博士毕业论文, 沈阳, 2008)[54] Liu P L, Shang J K. Scr Mater, 2001; 44: 1019
[55] Liu P L, Shang J K. J Mater Res, 2001; 16: 1651
[56] Zou H F, Zhang Q K, Tian Y Z, Zhang Z F. J Appl Phys, received

[1] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
[2] ZHANG Haifeng, YAN Haile, FANG Feng, JIA Nan. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars[J]. 金属学报, 2023, 59(8): 1051-1064.
[3] XU Yongsheng, ZHANG Weigang, XU Lingchao, DAN Wenjiao. Simulation of Deformation Coordination and Hardening Behavior in Ferrite-Ferrite Grain Boundary[J]. 金属学报, 2023, 59(8): 1042-1050.
[4] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[5] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[6] LI Xin, JIANG He, YAO Zhihao, DONG Jianxin. Theoretical Calculation and Analysis of the Effect of Oxygen Atom on the Grain Boundary of Superalloy Matrices Ni, Co and NiCr[J]. 金属学报, 2023, 59(2): 309-318.
[7] YANG Du, BAI Qin, HU Yue, ZHANG Yong, LI Zhijun, JIANG Li, XIA Shuang, ZHOU Bangxin. Fractal Analysis of the Effect of Grain Boundary Character on Te-Induced Brittle Cracking in GH3535 Alloy[J]. 金属学报, 2023, 59(2): 248-256.
[8] LIU Lujun, LIU Zheng, LIU Renhui, LIU Yong. Grain Boundary Structure and Coercivity Enhancement of Nd90Al10 Alloy Modified NdFeB Permanent Magnets by GBD Process[J]. 金属学报, 2023, 59(11): 1457-1465.
[9] WANG Jiangwei, CHEN Yingbin, ZHU Qi, HONG Zhe, ZHANG Ze. Grain Boundary Dominated Plasticity in Metallic Materials[J]. 金属学报, 2022, 58(6): 726-745.
[10] LI Haiyong, LI Saiyi. Effect of Temperature on Migration Behavior of <111> Symmetric Tilt Grain Boundaries in Pure Aluminum Based on Molecular Dynamics Simulations[J]. 金属学报, 2022, 58(2): 250-256.
[11] LIU Zhongwu, HE Jiayi. Several Issues on the Development of Grain Boundary Diffusion Process for Nd-Fe-B Permanent Magnets[J]. 金属学报, 2021, 57(9): 1155-1170.
[12] HU Biao, ZHANG Huaqing, ZHANG Jin, YANG Mingjun, DU Yong, ZHAO Dongdong. Progress in Interfacial Thermodynamics and Grain Boundary Complexion Diagram[J]. 金属学报, 2021, 57(9): 1199-1214.
[13] NI Ke, YANG Yinhui, CAO Jianchun, WANG Liuhang, LIU Zehui, QIAN Hao. Softening Behavior of 18.7Cr-1.0Ni-5.8Mn-0.2N Low Nickel-Type Duplex Stainless Steel During Hot Compression Deformation Under Large Strain[J]. 金属学报, 2021, 57(2): 224-236.
[14] SUN Jia, LI Xuexiong, ZHANG Jinhu, WANG Gang, YANG Mei, WANG Hao, XU Dongsheng. Phase Field Modeling of Formation Mechanism of Grain Boundary Allotriomorph in βα Phase Transformation in Ti-6Al-4V Alloy[J]. 金属学报, 2020, 56(8): 1113-1122.
[15] LI Xiucheng,SUN Mingyu,ZHAO Jingxiao,WANG Xuelin,SHANG Chengjia. Quantitative Crystallographic Characterization of Boundaries in Ferrite-Bainite/Martensite Dual-Phase Steels[J]. 金属学报, 2020, 56(4): 653-660.
No Suggested Reading articles found!