Please wait a minute...
Acta Metall Sin  2009, Vol. 45 Issue (12): 1456-1460    DOI:
论文 Current Issue | Archive | Adv Search |
EFFECTS OF AGING TEMPERATURE ON PRECIPITATION PHASE OF A CAST SUPER DUPLEX\par STAINLESS STEEL
XIANG Hongliang; HE Fushan; LIU Dong
School of Mechanical Engineering and Automation of Fuzhou University; Fuzhou 350108
Cite this article: 

XIANG Hongliang HE Fushan LIU Dong. EFFECTS OF AGING TEMPERATURE ON PRECIPITATION PHASE OF A CAST SUPER DUPLEX\par STAINLESS STEEL. Acta Metall Sin, 2009, 45(12): 1456-1460.

Download:  PDF(2030KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Super duplex stainless steels have been extensively used in many applications owing to their excellent mechanical properties and corrosion resistance. But subjected to “aging” treatments at temperatures of 600 to 1000℃, duplex stainless steels will precipitate a certain amount of intermetallic phases such as σ phase, χ phase and chromium nitride, etc., which decrease mechanical properties and corrosion resistance of these steels. In this paper, the effects of aging treatments on the type, size and quantity of precipitation particles of a cast super duplex stainless steel after solution treatment were studied  by means of OM, SEM, XRD and TEM. The results indicate that the soloution annealing cast super duplex stainless steel is aged in temperatures ranging from 650 to 950℃, no phase transformation occurs in the original austenite but the intermetallic phases are precipitated in ferrite and at ferrite/austenite interfaces. The precipitated intermetallic phases are mainly χ phases during aging at 650℃. They are σ and χ phases at aging temperature of 750℃. When temperature increased to 850℃, the intermetallic phase is only σ phase. At
temperature of 950℃, there is a little σ phase precipitated at ferrite/austenite interfaces. The formation of intermetallic phases is analyzed by thermodynamics, which shows that metastable χ phase can invert to σ phase at aging temperatures from 650 to 750℃. When temperature ranging from 850 to 950℃, σ phase can be directly precipitated.

Key words:  cast super duplex stainless steel      aging temperatures      &sigma      phase      &chi      phase     
Received:  09 June 2009     
ZTFLH: 

TG172.8

 
Fund: 

Supported by Program for Service of Enterprise by Technical Personnel, The Ministry of Science and Technology of PRC (2009GJC40018), Innovation Foundation for Young Talent of Fujian (No.2008F3061) and Technological Development Foundation of Fuzhou University (No.2008–XQ–16)

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2009/V45/I12/1456

[1] Wu J. Duplex stainless steel. Beijing: Metallurgy Industry Press, 1999: 1
(吴 玖. 双相不锈钢. 北京: 冶金工业出版社, 1999: 1)
[2] Sun W . Ord Mater Sci Eng, 2001; 24: 49
(孙文山. 兵器材料科学与工程. 2001; 24: 49)
[3] Wang J Y. Petrochem Des, 2006; 23: 40
(汪建羽. 石油化工设计. 2006; 23: 40)
[4] Jan O, Malin S. Desalination, 2007; 205: 104
[5] Ezuber H M, El–Houd A, El–Shawesh F. Desalination, 2007; 207: 268
[6] Maehara Y, Masao K, Fujino N. J ISIJ, 1983; 63: 577
[7] Long J M, Fan A M. Phys Test, 1997; 15(1): 1
(龙晋明, 樊爱民. 物理测试. 1997; 15(1): 1)
[8] Otarola T, Hollnr S, Bonnefois B. ng Fail Anal, 2005; 12: 930
[9] Huang C, Shih C. Mater Sci Eng, 2005; A402: 66
[10] Russell SW, Lundin C D. Final Report for the Department of Energy: the Development of Qualification Standards for Cast Duplex Stainless Steel the University of Tennessee, Knoxville, 2005, 2: 8
[11] Chen J Y, Yang Z Y, Yang W, Su J, Luo F H. J Iron Steel Res, 2006; 18: 2
(陈嘉砚, 杨卓越, 杨 武, 苏 杰, 罗丰华. 钢铁研究学报. 2006; 18: 2)
[12] Mao P L, Su G Y, Yang K. J Shenyang Univ Technol, 2003; 25: 193
(毛萍莉, 苏国跃, 杨柯. 沈阳工业大学学报. 2003; 25: 193)
[13] Wang S H, Chiu P K, Yang J R. Mater Sci Eng, 2006; A420: 27
[14] Pohl M, Storz O, Glogowski T. Mater Charact, 2007; 58: 66
[15] Redja A, Proult A, Donnadieu P, Morniroli J. J Mater Sci, 2004; 39: 2386
[16] Calliari I, Zanesco M, Ramous E. J Mater Eng Perform, 2007; 16: 112
[17] Sieurin H, Sandstrom R. Mater Sci Eng, 2007; A444: 271
[18] Jang Y, Son J, Kim S. Metall Mater Trans, 2004; 35A: 3432
[19] Jang Y, Kim S, Lee J. Metall Mater Trans, 2005; 36A: 1229
[20] Kim Y J, Ugurlu O, Jiang C. Metall Mater Trans, 2007; 38A: 203

[1] CHEN Jia, GUO Min, YANG Min, LIU Lin, ZHANG Jun. Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1209-1220.
[2] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[3] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[4] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[5] LI Qian, LIU Kai, ZHAO Tianliang. Rust Formation Behavior and Mechanism of Q235 Carbon Steel in 5%NaCl Salt Spray Under Elastic Tensile Stress[J]. 金属学报, 2023, 59(6): 829-840.
[6] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[7] ZHAO Yafeng, LIU Sujie, CHEN Yun, MA Hui, MA Guangcai, GUO Yi. Critical Inclusion Size and Void Growth in Dual-Phase Ferrite-Bainite Steel During Ductile Fracture[J]. 金属学报, 2023, 59(5): 611-622.
[8] LI Qian, SUN Xuan, LUO Qun, LIU Bin, WU Chengzhang, PAN Fusheng. Regulation of Hydrogen Storage Phase and Its Interface in Magnesium-Based Materials for Hydrogen Storage Performance[J]. 金属学报, 2023, 59(3): 349-370.
[9] ZHANG Kaiyuan, DONG Wenchao, ZHAO Dong, LI Shijian, LU Shanping. Effect of Solid-State Phase Transformation on Stress and Distortion for Fe-Co-Ni Ultra-High Strength Steel Components During Welding and Vacuum Gas Quenching Processes[J]. 金属学报, 2023, 59(12): 1633-1643.
[10] WANG Chongyang, HAN Shiwei, XIE Feng, HU Long, DENG Dean. Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel[J]. 金属学报, 2023, 59(12): 1613-1623.
[11] CHEN Kaixuan, LI Zongxuan, WANG Zidong, Demange Gilles, CHEN Xiaohua, ZHANG Jiawei, WU Xuehua, Zapolsky Helena. Morphological Evolution of Fe-Rich Precipitates in a Cu-2.0Fe Alloy During Isothermal Treatment[J]. 金属学报, 2023, 59(12): 1665-1674.
[12] ZHANG Limin, LI Ning, ZHU Longfei, YIN Pengfei, WANG Jianyuan, WU Hongjing. Macrosegregation Mechanism of Primary Silicon Phase in Cast Hypereutectic Al-Si Alloys Under Alternating Electropulsing[J]. 金属学报, 2023, 59(12): 1624-1632.
[13] MA Guonan, ZHU Shize, WANG Dong, XIAO Bolv, MA Zongyi. Aging Behaviors and Mechanical Properties of SiC/Al-Zn-Mg-Cu Composites[J]. 金属学报, 2023, 59(12): 1655-1664.
[14] QI Xiaoyong, LIU Wenbo, HE Zongbei, WANG Yifan, YUN Di. Phase-Field Simulation of the Densification Process During Sintering of UN Nuclear Fuel[J]. 金属学报, 2023, 59(11): 1513-1522.
[15] LOU Feng, LIU Ke, LIU Jinxue, DONG Hanwu, LI Shubo, DU Wenbo. Microstructures and Formability of the As-Rolled Mg- xZn-0.5Er Alloy Sheets at Room Temperature[J]. 金属学报, 2023, 59(11): 1439-1447.
No Suggested Reading articles found!