Please wait a minute...
Acta Metall Sin  2009, Vol. 45 Issue (10): 1217-1224    DOI:
论文 Current Issue | Archive | Adv Search |
STUDY OF A NEW-TYPE HIGH STRENGTH Ni--BASED SUPERALLOY DZ68 WITH GOOD HOT CORROSION RESISTANCE
LIU Enze 1; 2; SUN Shunchen 1; TU Ganfeng1; ZHENG Zhi2; NING Likui2; ZHANG Lingfeng 3
1. School of Materials and Metallurgy; Northeastern University; Shenyang 110004
2. Institute of Metal Research; Chinese Academy of Sciences; Shenyang 110016
3. AVIC Xi'an Aero--Engine (Group) Ltd.; Xi'an 710021
Cite this article: 

LIU Enze SUN Shunchen TU Ganfeng ZHENG Zhi NING Likui ZHANG Lingfeng . STUDY OF A NEW-TYPE HIGH STRENGTH Ni--BASED SUPERALLOY DZ68 WITH GOOD HOT CORROSION RESISTANCE. Acta Metall Sin, 2009, 45(10): 1217-1224.

Download:  PDF(3055KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In order to meet the requirements of marine gas turbine blade materials, a new–type directional solidification Ni–based superalloy named DZ68 was developed. The alloy composition was designed by low segregation technology. Its nominal chemical composition (mass fraction, %) is C
0.05, Cr 12.0, Mo 1.0, W 5.0, Co 8.5, Al 5.3, Ti 0.5, Ta 5.0, Re 2.0, B 0.01, and balance is Ni. The microstructures of as–cast DZ68 alloy and after heat treatment states were analyzed by OM, SEM and XRD. The tensile, rupture and hot corrosion resistance properties of DZ68 alloy were compared with
DZ125 and IN738 alloys. Results show that the microstructure of as–cast DZ68 alloy is composed of  γ, γ', (γ+γ') eutectics, MC type carbides and a few borides. After heat treatment, the microstructureof DZ68 alloy is composed of  γ, γ' and carbides. The carbides are mainly MC and M23C6. The tensile strength of DZ68 alloy decreases slightly with the increase of temperature, and reaches its minimum value at 700℃. When the temperature is higher than 700℃, the tensile stregth increases so evidently that reaches its maximum t oce at 760 ℃, But whethe temperature is higher than 760 ℃its tensile strength decreases obviously. It is well recognized the relatioship of the tensile strength of DZ68 alloy with temperature is abnormal, similar to that of its yield strength but oposite to that of its plasticity.  The tensile and rupture properties of DZ68 alloy are nearly the same as those of DZ125 alloy and its hot corrosion resistance property is nearly the same as that of IN738 alloy under the same conditions.

Key words:  DZ68 alloy      tensile property      rupture property      hot corrosion resistance     
Received:  09 April 2009     
ZTFLH: 

TG146.1

 
  TG172.6

 

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2009/V45/I10/1217

[1] Liu X W, Huang J F. J Chongqing Inst Technol, 2000; 14(1): 48 (刘筱薇, 黄进峰. 重庆工学院学报, 2000; 14(1): 48) [2] Gurrappa I. Oxid Met, 1999; 51: 353 [3] Huang Q Y, Li H K, Guo J T. Superalloy. Beijing: Metallurgical Industry Press, 2000: 115 (黄乾尧, 李汉康, 郭建亭. 高温合金. 北京: 冶金工业出版社, 2000: 115) [4] Stringer J. Mater Sci Technol, 1987; 3: 482 [5] Li M S. High Temperature Corrosion of Metal. Beijing: Metallurgical Industry Press, 2001: 34 (李美栓. 金属的高温腐蚀. 北京: 冶金工业出版社, 2001: 34) [6] Sidhu R K, Ojo O A, Chaturvedi M C. J Mater Sci, 2008; 43: 3612 [7] Zhou Y Z, Volek A, Green N R. Acta Mater, 2008; 56: 2631 [8] Gordon A P, Trexler M D, Neu R W. Acta Mater, 2007; 55: 3375 [9] Wright I G, Gibbons T B. Int J Hydrogen Energy, 2007; 32: 3610 [10] Zhu Y X, Zhang S N, Zhang T X, Zhang J H, Hu Z Q, Xie X S, Shi C X. In: Antolovich S D, Stusrud R W, Mackay R A, Anton D L, Khan T, Kissinger R D, Klarstrom D L eds., Superalloys 1992, PA: TMS, 1992: 145 [11] Shi C X, Yan M G, Zhu Z Q. China Aeronautical Materials Handbook. Beijing: Standards Press of China, 2001: 550 (师昌绪, 颜鸣皋, 朱之琴. 中国航空材料手册. 北京: 中国标准出版社, 2001: 550) [12] Shi C X, Lu D, Rong K. Forty Years of China Superalloy. Beijing: Chinese Science and Technology Press, 1996: 8 (师昌绪, 陆达, 荣科. 中国高温合金四十年. 北京: 中国科学技术出版社, 1996: 8) [13] Sun M C. Mechanics Property of Metal. Harbin: Harbin Institute of Technology Press, 2005: 240 (孙茂才. 金属力学性能. 哈尔滨: 哈尔滨工业大学出版社, 2005: 240) [14] Ma C D, Huang Z H,Wang Q R. Aeronautical Engine Materials Handbooks for Designation. Beijing: Metallurgical Indusry Press, 1989: 61 (马翠娣, 黄志豪, 王庆如. 航空发动机设计用材料数据手册. 北京: 冶金工业出版社, 1989: 61) [15] Ning L K, Zheng Z, Tan Y, Liu E Z, Tong J, Yu Y S,Wang H. Acta Metall Sin, 2009; 45: 161 (宁礼奎, 郑 志, 谭 毅, 刘恩泽, 佟 健, 于永泗, 王 华. 金属学报, 2009; 45: 161) [16] Yu Z F, Zheng Z, Liu E Z, Yu Y S, Zhu Y X. J Chin Soc Corros Prot, 2008; 28: 277 (于忠锋, 郑 志, 刘恩泽, 于永泗, 朱耀宵. 中国腐蚀与防护学报, 2008; 28: 277)
[1] WANG Di, HE Lili, WANG Dong, WANG Li, ZHANG Siqian, DONG Jiasheng, CHEN Lijia, ZHANG Jian. Influence of Pt-Al Coating on Tensile Properties of DD413 Alloy at High Temperatures[J]. 金属学报, 2023, 59(3): 424-434.
[2] ZHANG Zixuan, YU Jinjiang, LIU Jinlai. Anisotropy of Stress Rupture Property of Ni Base Single Crystal Superalloy DD432[J]. 金属学报, 2023, 59(12): 1559-1567.
[3] SUN Tengteng, WANG Hongze, WU Yi, WANG Mingliang, WANG Haowei. Effect ofIn Situ 2%TiB2 Particles on Microstructure and Mechanical Properties of 2024Al Additive Manufacturing Alloy[J]. 金属学报, 2023, 59(1): 169-179.
[4] LIU Xianfeng, LIU Dong, LIU Renci, CUI Yuyou, YANG Rui. Microstructure and Tensile Properties of Ti-43.5Al-4Nb-1Mo-0.1B Alloy Processed by Hot Canned Extrusion[J]. 金属学报, 2020, 56(7): 979-987.
[5] YU Chenfan, ZHAO Congcong, ZHANG Zhefeng, LIU Wei. Tensile Properties of Selective Laser Melted 316L Stainless Steel[J]. 金属学报, 2020, 56(5): 683-692.
[6] LI Yuancai, JIANG Wugui, ZHOU Yu. Effect of Nanopores on Tensile Properties of Single Crystal/Polycrystalline Nickel Composites[J]. 金属学报, 2020, 56(5): 776-784.
[7] WANG Xi,LIU Renci,CAO Ruxin,JIA Qing,CUI Yuyou,YANG Rui. Effect of Cooling Rate on Boride and Room Temperature Tensile Properties of β-Solidifying γ-TiAl Alloys[J]. 金属学报, 2020, 56(2): 203-211.
[8] GUO Xiaotong, ZHENG Weiwei, LI Longfei, FENG Qiang. Cooling Rate Driven Thin-Wall Effects on the Microstructures and Stress Rupture Properties of K465 Superalloy[J]. 金属学报, 2020, 56(12): 1654-1666.
[9] Zheng LIU,Jianrong LIU,Zibo ZHAO,Lei WANG,Qingjiang WANG,Rui YANG. Microstructure and Tensile Property of TC4 Alloy Produced via Electron Beam Rapid Manufacturing[J]. 金属学报, 2019, 55(6): 692-700.
[10] Dechun REN, Huhu SU, Huibo ZHANG, Jian WANG, Wei JIN, Rui YANG. Effect of Cold Rotary-Swaging Deformation on Microstructure and Tensile Properties of TB9 Titanium Alloy[J]. 金属学报, 2019, 55(4): 480-488.
[11] Shenghu CHEN, Lijian RONG. Microstructure Evolution During Solution Treatment and Its Effects on the Properties of Ni-Fe-Cr Alloy[J]. 金属学报, 2018, 54(3): 385-392.
[12] Dongdong LI, Lihe QIAN, Shuai LIU, Jiangying MENG, Fucheng ZHANG. Effect of Manganese Content on Tensile Deformation Behavior of Fe-Mn-C TWIP Steels[J]. 金属学报, 2018, 54(12): 1777-1784.
[13] Mingzhe XI, Chao LV, Zhenhao WU, Junying SHANG, Wei ZHOU, Rongmei DONG, Shiyou GAO. Microstructures and Mechanical Properties of TC11 Titanium Alloy Formed by Laser Rapid Forming and Its Combination with Consecutive Point-Mode Forging[J]. 金属学报, 2017, 53(9): 1065-1074.
[14] Rui CHEN, Qingyan XU, Huiting GUO, Zhiyuan XIA, Qinfang WU, Baicheng LIU. Modeling of Strain Hardening Behavior and Mechanical Properties of Al-7Si-Mg Cast Aluminum AlloysDuring Tensile Process[J]. 金属学报, 2017, 53(9): 1110-1124.
[15] Jinxia YANG,Futao XU,Donglin ZHOU,Yuan SUN,Xingyu HOU,Chuanyong CUI. Effects of Re-Melting Processes on the Tensile Properties of K452 Alloy at High Temperature[J]. 金属学报, 2017, 53(6): 703-708.
No Suggested Reading articles found!