Please wait a minute...
Acta Metall Sin  2009, Vol. 45 Issue (10): 1225-1231    DOI:
论文 Current Issue | Archive | Adv Search |
INFLUENCE OF WITHDRAWING RATE TRANSITION ON THE PRIMARY DENDRITE ARM SPACING AND MICROSEGREGATION OF DIRECTIONALLY SOLIDIFIED SINGLE CRYSTAL SUPERALLOY DD3
HUANG Taiwen; LIU Lin; ZHANG Weiguo; ZHANG Jun; FU Hengzhi
State Key Laboratory of Solidification Processing; Northwestern Polytechnical University; Xi'an 710072
Cite this article: 

HUANG Taiwen LIU Lin ZHANG Weiguo ZHANG Jun FU Hengzhi. INFLUENCE OF WITHDRAWING RATE TRANSITION ON THE PRIMARY DENDRITE ARM SPACING AND MICROSEGREGATION OF DIRECTIONALLY SOLIDIFIED SINGLE CRYSTAL SUPERALLOY DD3. Acta Metall Sin, 2009, 45(10): 1225-1231.

Download:  PDF(1328KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The microstructure of single crystal Ni–based superalloys is virtually determined by both processing parameters of growth rate v and thermal gradient G ahead of the solidification front. Previous researches have established the relationship between dendrite spacings and G or v under
supposing those parameters to be constant from beginning to end of solidification, resulting in the disaccord between the predicted and experimental results for actual blade productions. Furthermore, previous experimental and theoretical works seldom involve the influence of processing parameter
change on dendrite growth for multi–component industrial alloys. Therefore, investigation of directional solidified microstructure varying with processing parameter is the focus of present study. The influence of the withdrawing rae ransition during directional solidification on the primary dendrite arm spacing PDAS) and microsegregtion for single crystal superalloy DD3 has been studied by liquid metal cooled (LMC) directional solidification method. A wide range of withdrawing rate variations from 50 to 600 μm/s is allowable under G high to 250 K/cm. The results indicate that the average PDAS is remarkably dependent on the history of growth rate variation. The smaller PDASs of 56.5 and 86 μm can be obtained under withdrawing rate transition from higher values of 600 and 300 μm/s into 100 μm/s, while they are kept being 111.5 μm if withdrawing rate is 100 μm/s all the time. In contrast, PDASs increase to 109 and 93 μm under withdrawing rate transition from lower values of 50 and 100 μm/s into 300 μm/s, while tey are kept being a small value of 70 μm if growth rate is 300 μm/s at beginning. These experimental results agree approximately with those from Hunt–Lu model, but the maximum to miimum ratio of PDASs at a given solidification paameter, i.e.,  λ1max1min , is roved to be more than 2It is also shown that the denrite microsegreation will be lessened with the decrease of PDASs at the same current soldfication parameters. 

Key words:  single crystal superalloy      growth rate      transition      primary dendrite arm spacing      microsegregation     
Received:  08 December 2008     
ZTFLH: 

TG132.32

 
Fund: 

Supported by National Basic Research Program of China (No.2006CB605202) and National Natural Science Foundation of China (Nos.50771081 and 50827102)

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2009/V45/I10/1225

[1] Li S M, Du W, Zhang J, Li J S, Liu L, Fu H Z. Acta Metall Sin, 2002; 38: 1195
(李双明, 杜炜, 张军, 李金山, 刘 林, 傅恒志. 金属学报, 2002; 38: 1195)
[2] Ma D X. Metall Trans, 2004; 35B: 741
[3] Elliott A J. PhD Thesis, Michigan University, Michigan, 2005
[4] Smith V G, Tiller W A, Rutter J W. Can J Phys, 1955; 33: 723
[5] Li S M, Fu H Z. Sci China, 2008; 38E: 402
(李双明, 傅恒志. 中国科学, 2008; 38E: 402)
[6] Warren J A, Langer J S. Phy Rev, 1993; 47E: 2702
[7] Wang W, Lee P D, McLean M. Acta Mater, 2003; 51: 2971
[8] Ding G L, Huang W D, Zhou Y. J Mater Sci Lett, 1997; 16: 376
[9] Hui J, Tiwari R, Wu X, Tewari S N, Trivedi R. Metall Trans, 2002; 33A: 3499
[10] Guo Y G, Li S M, Liu L, Fu H Z. Acta Metall Sin, 2008; 44: 365
(郭勇冠, 李双明, 刘林, 傅恒志. 金属学报, 2008; 44: 365)
[11] Hunt J D. Solidification and Casting of Metals. The Metals Society, London, 1979: 3
[12] Kurz W, Fisher D J. Acta Mater, 1981; 29: 11
[13] Ma D X, Sahm P R. Metall Trans, 1998; 29A: 1113
[14] Hut J D, Lu S Z. Metall Trans, 1996; 27A: 611
[15] Li L C. PhD Thesis, Auburn University, Alabama, 2002
[16] Ma D X, Sahm P R. Metall Trans, 1992; 23A: 3377
[17] Karunaratne M S A, Rae C M F, Reed R C. Metall Trans, 2001; 32A: 2001
[18] Zimmermann G, Weiss A. Microgravity Sci & Tech, 2005; 16: 141
[19] Zou M M, Zhang J, Liu L, Fu H Z. Acta Metall Sin, 2008; 44: 150
(邹敏明, 张军, 刘林, 傅恒志. 金属学报, 2008; 44: 150)
[20] Warren J A, Langer J S. Phy Rev, 1990; 42A: 3518
[21] Basaran M. Metall Trans, 1981; 12A: 1235

[1] LI Jiarong, DONG Jianmin, HAN Mei, LIU Shizhong. Effects of Sand Blasting on Surface Integrity and High Cycle Fatigue Properties of DD6 Single Crystal Superalloy[J]. 金属学报, 2023, 59(9): 1201-1208.
[2] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[4] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[5] WANG Di, HE Lili, WANG Dong, WANG Li, ZHANG Siqian, DONG Jiasheng, CHEN Lijia, ZHANG Jian. Influence of Pt-Al Coating on Tensile Properties of DD413 Alloy at High Temperatures[J]. 金属学报, 2023, 59(3): 424-434.
[6] HAN Weizhong, LU Yan, ZHANG Yuheng. Mechanism of Ductile-to-Brittle Transition in Body-Centered-Cubic Metals:A Brief Review[J]. 金属学报, 2023, 59(3): 335-348.
[7] LIAO Jingjing, ZHANG Wei, ZHANG Junsong, WU Jun, YANG Zhongbo, PENG Qian, QIU Shaoyu. Periodic Densification-Transition Behavior of Zr-Sn-Nb-Fe-V Alloys During Uniform Corrosion in Superheated Steam[J]. 金属学报, 2023, 59(2): 289-296.
[8] ZHANG Zixuan, YU Jinjiang, LIU Jinlai. Anisotropy of Stress Rupture Property of Ni Base Single Crystal Superalloy DD432[J]. 金属学报, 2023, 59(12): 1559-1567.
[9] QI Zhao, WANG Bin, ZHANG Peng, LIU Rui, ZHANG Zhenjun, ZHANG Zhefeng. Effects of Stress Ratio on the Fatigue Crack Growth Rate Under Steady State of Selective Laser Melted TC4 Alloy with Defects[J]. 金属学报, 2023, 59(10): 1411-1418.
[10] GUO Dongwei, GUO Kunhui, ZHANG Fuli, ZHANG Fei, CAO Jianghai, HOU Zibing. A New Method for CET Position Determination of Continuous Casting Billet Based on the Variation Characteristics of Secondary Dendrite Arm Spacing[J]. 金属学报, 2022, 58(6): 827-836.
[11] HU Biao, ZHANG Huaqing, ZHANG Jin, YANG Mingjun, DU Yong, ZHAO Dongdong. Progress in Interfacial Thermodynamics and Grain Boundary Complexion Diagram[J]. 金属学报, 2021, 57(9): 1199-1214.
[12] ZHANG Nizhen, MA Xindi, GENG Chuan, MU Yongkun, SUN Kang, JIA Yandong, HUANG Bo, WANG Gang. Effect of Adding Ag on the Nanoindentation Behavior of Cu-Zr-Al-Based Metallic Glass[J]. 金属学报, 2021, 57(4): 567-574.
[13] HU Xiang, GE Jiacheng, LIU Sinan, FU Shu, WU Zhenduo, FENG Tao, LIU Dong, WANG Xunli, LAN Si. Combustion Mechanism of Fe-Nb-B-Y Amorphous Alloys with an Anomalous Exothermic Phenomenon[J]. 金属学报, 2021, 57(4): 542-552.
[14] GUAN Pengfei, SUN Shengjun. Atomic-Level Study in the Structure and Its Instability of Metallic Glasses[J]. 金属学报, 2021, 57(4): 501-514.
[15] ZENG Qiaoshi, YIN Ziliang, LOU Hongbo. Polyamorphic Transitions in Metallic Glasses[J]. 金属学报, 2021, 57(4): 491-500.
No Suggested Reading articles found!