Please wait a minute...
Acta Metall Sin  2008, Vol. 44 Issue (9): 1085-1089     DOI:
Research Articles Current Issue | Archive | Adv Search |
SIMULATIONS AND ANALYSIS OF PHASE TRANSFORMATIONS IN bcc-Fe UNDER ISOTHERMAL COMPRESSION
;;
北京应用物理与计算数学研究所
Cite this article: 

. SIMULATIONS AND ANALYSIS OF PHASE TRANSFORMATIONS IN bcc-Fe UNDER ISOTHERMAL COMPRESSION. Acta Metall Sin, 2008, 44(9): 1085-1089 .

Download:  PDF(1038KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Using EAM potential and molecular dynamics (MD), we simulate the transition (bcc to hcp) in bcc-Fe under isothermal compression (along [001] orientation). Simulated results reveal that while stress beyond transition threshold, hcp nucleations appear and form flaky grains along (110) face and the system shows an over-relaxation of stress. Mean stress and hcp mass percent increase linearly with volume compression during the growth of hcp nucleations, and longitudinal deviatonic stress reduces linearly with hcp mass percent for the whole transition process. Average potential of hcp atoms are greater than those of bcc atoms.
Key words:  molecular dynamics      bcc-Fe      phase transformation      isothermal compression      
Received:  21 December 2007     
ZTFLH:  O414.12  
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2008/V44/I9/1085

[1]Bancroft D,Peterson E L,Minshall S.J App Phys,1956; 27:291
[2]Johnson P C,Stein B A,Davis R S.J Appl Phys,1962; 33:557
[3]Takahashi T,Bassett W A.Science,1964;145:483
[4]Barker L M,Hollenbach R E.J Appl Phys,1974;45:4872
[5]Taylor R D,Pasternak M P,Jeanloz R.J Appl Phys,1991; 69:6126
[6]Boettger J C,Wallace D C.Phys Rev,1997;55B:2840
[7]Yano K,Horie Y.Int J Plast,2002;18:1427
[8]Caspersen K J,Lew A,Ortiz M,Carter E A.Phys Rev Left,2004;93:115501
[9]Daw M S,Baskes M I.Phys Rev,1984;29B:6443
[10]Finnis M W,Sinclair J E.Philos Mag,1984;50A:45
[11]Kadau K,Germann T C,Lomdahl P S,Holian B L.Sci- ence,2002;296:1681
[12]Kadau K,Germann T C,Lomdahl P S,Holian B L.Phys Rev,2005;72B:064120
[13]Shao J L,Wang P,Qin C S,Zhou H Q.Acta Phys Sin, 2007;56:5389 (邵建立,王裴,秦承森,周洪强.物理学报,2007;56:5389)
[14]Shao J L,Wang P,Qin C S,Zhou H Q.Acta Phys Sin, 2008;57:1254 (邵建立,王裴,秦承森,周洪强.物理学报,2008;57:1254)
[15]Harrison R J,Voter A F,Chen S P.Atomistic Simulation of Materials Beyond Pair Potentials.New York:Plenum Press,1989:219
[16]Rose J H,Smith J R,Guinea F,Ferrante J.Phys Rev, 1984;29B:2963
[17]Hoffmann K H,Schreiber M.Computational Physics. Berlin:Springer-Verlag,1996:268
[18]Swope W C,Andersen H C,Berens P H,Wilson K R.J Chem Phys,1982;76:637
[19]Irving J H,Kirkwood J G.J Chem Phys,1950;18:817
[20]Allen M P,Tildesley D J.Computer Simulation of Liquids. Oxford:Clarendon Press,1987:46
[1] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[2] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[3] WANG Chongyang, HAN Shiwei, XIE Feng, HU Long, DENG Dean. Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel[J]. 金属学报, 2023, 59(12): 1613-1623.
[4] ZHANG Kaiyuan, DONG Wenchao, ZHAO Dong, LI Shijian, LU Shanping. Effect of Solid-State Phase Transformation on Stress and Distortion for Fe-Co-Ni Ultra-High Strength Steel Components During Welding and Vacuum Gas Quenching Processes[J]. 金属学报, 2023, 59(12): 1633-1643.
[5] LI Sai, YANG Zenan, ZHANG Chi, YANG Zhigang. Phase Field Study of the Diffusional Paths in Pearlite-Austenite Transformation[J]. 金属学报, 2023, 59(10): 1376-1388.
[6] LI Xiaobing, QIAN Kun, SHU Lei, ZHANG Mengshu, ZHANG Jinhu, CHEN Bo, LIU Kui. Effect of W Content on the Phase Transformation Behavior in Ti-42Al-5Mn- xW Alloy[J]. 金属学报, 2023, 59(10): 1401-1410.
[7] LI Haiyong, LI Saiyi. Effect of Temperature on Migration Behavior of <111> Symmetric Tilt Grain Boundaries in Pure Aluminum Based on Molecular Dynamics Simulations[J]. 金属学报, 2022, 58(2): 250-256.
[8] LI Xueda, LI Chunyu, CAO Ning, LIN Xueqiang, SUN Jianbo. Crystallography of Reverted Austenite in the Intercritically Reheated Coarse-Grained Heat-Affected Zone of High Strength Pipeline Steel[J]. 金属学报, 2021, 57(8): 967-976.
[9] FENG Miaomiao, ZHANG Hongwei, SHAO Jingxia, LI Tie, LEI Hong, WANG Qiang. Prediction of Macrosegregation of Fe-C Peritectic Alloy Ingot Through Coupling with Thermodynamic Phase Transformation Path[J]. 金属学报, 2021, 57(8): 1057-1072.
[10] LIU Chenxi, MAO Chunliang, CUI Lei, ZHOU Xiaosheng, YU Liming, LIU Yongchang. Recent Progress in Microstructural Control and Solid-State Welding of Reduced Activation Ferritic/Martensitic Steels[J]. 金属学报, 2021, 57(11): 1521-1538.
[11] LI Jinshan, TANG Bin, FAN Jiangkun, WANG Chuanyun, HUA Ke, ZHANG Mengqi, DAI Jinhua, KOU Hongchao. Deformation Mechanism and Microstructure Control of High Strength Metastable β Titanium Alloy[J]. 金属学报, 2021, 57(11): 1438-1454.
[12] LIANG Jinjie, GAO Ning, LI Yuhong. Interaction Between Interstitial Dislocation Loop and Micro-Crack in bcc Iron Investigated by Molecular Dynamics Method[J]. 金属学报, 2020, 56(9): 1286-1294.
[13] LI Meilin, LI Saiyi. Motion Characteristics of <c+a> Edge Dislocation on the Second-Order Pyramidal Plane in Magnesium Simulated by Molecular Dynamics[J]. 金属学报, 2020, 56(5): 795-800.
[14] LI Yuancai, JIANG Wugui, ZHOU Yu. Effect of Nanopores on Tensile Properties of Single Crystal/Polycrystalline Nickel Composites[J]. 金属学报, 2020, 56(5): 776-784.
[15] LI Yuancai, JIANG Wugui, ZHOU Yu. Effect of Temperature on Mechanical Propertiesof Carbon Nanotubes-Reinforced Nickel Nano-Honeycombs[J]. 金属学报, 2020, 56(5): 785-794.
No Suggested Reading articles found!