Please wait a minute...
Acta Metall Sin  2008, Vol. 44 Issue (8): 905-910     DOI:
Research Articles Current Issue | Archive | Adv Search |
Effect of heating rate on microstructure of semi-solid 2024 alloy during partial remelting
WANG Shun-Cheng;Yuan-Yuan LI;Wei-Ping CHEN;Guo-Ru PAN
华南理工大学
Cite this article: 

WANG Shun-Cheng; Yuan-Yuan LI; Wei-Ping CHEN; Guo-Ru PAN. Effect of heating rate on microstructure of semi-solid 2024 alloy during partial remelting. Acta Metall Sin, 2008, 44(8): 905-910 .

Download:  PDF(1792KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The semi-solid 2024 alloy billets prepared by low superheat pouring were reheated to 625℃ with 7, 15.7 and 31.3℃/min, respectively, and then held isothermally. The effect of heating rate on the microstructure of billets was studied by optical microscope and metallographic image analysis system. The results show that with the prolongation of heating time, the liquid fraction increases gradually, the grains grow up quickly by the coalescence and then spheroidize gradually by the Ostwald ripening. The higher the heating rate is, the quicker the formation rate of liquid phase is and the finer and rounder the grains are. It is found through the analysis of microstructure evolution mechanism that accelerating the formation rate of liquid phase by increasing the heating rate can restrain the coalescence of grains to a certain extent, in which the growth rate of grains is decreased and the spheroidization rate is accelerated.
Key words:  semi-solid metal      thixoforming      partial remelting      heating rate      microstructure evolution      
Received:  22 October 2007     
ZTFLH:  TG146.21  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2008/V44/I8/905

[1]Flemings M C.Metall Trans,1991;22:957
[2]Fan Z.Int Mater Rev,2002;47:49
[3]Luo S J,Jiang J F,Du Z M.Chin J Mech Eng,2003; 39(11):52 (罗守靖,姜巨福,杜之明.机械工程学报,2003;39(11):52)
[4]Seo P K,Kang C G.J Mater Process Technol,2005;162: 402
[5]Zoqui E J,Shehata M T,Paes M,Kao V,Essadiqi E. Mater Sci Eng,2002;A325:38
[6]Li Y D,Hao Y,Chen T J,Ma Y.Chin J Nonferrous Met, 2004;14:366 (李元东,郝远,陈体军,马颖.中国有色金属学报,2004;14:366)
[7]Liu C M,He N J,Li J K.J Mater Sci,2001;36:4949
[8]Le Q C,Zhang X J,Cui J Z,Lu G M,Ou P.Acta Metall Sin,2002;38:1266 (乐启炽,张新建,崔建忠,路贵民,欧鹏.金属学报,2002;38:1266)
[9]Zhou Q,Yang Y S,Tang J L,Hu Z Q.Acta Metall Sin, 2006:42:28 (周全,杨院生,唐军立,胡壮麒.金属学报,2006;42:28)
[10]Jung H K.J Mater Process Technol,2000;105:176
[11]Jiang H,Nguyen T H,Prud M.J Mater Process Technol, 2007;189:182
[12]Cui C L,Mao W M,Zhao A M,Sun F,Zhen Z S,Zhong X Y.Chin J Nonferrous Met,2000;10:809 (崔成林,毛卫民,赵爱民,孙峰,甄子胜,钟雪友.中国有色金属学报,2000;10:809)
[13]Easton M A,Kaufmann H,Fragner W.Mater Sci Eng, 2006;A420:135
[14]Lashkari O,Nafisi S,Ghomashchi R.Mater Sci Eng,2006; A441:49
[15]Liu Z,Mao W M,Zhao Z D.Traus Nonferrous Met Soc Chin,2006;16:71
[16]Liu Z H,Xu G H,Zhang H L.Thermal Analysts Appara- tus.Beijing:Chemistry Industry Press,2006:193 (刘振海,徐国华,张洪林.热分析仪器.北京:化学工业出版社,2006:193)
[17]Yu S R,Li D C,Kim N.Mater Sci Eng,2006;A420:165
[18]Tzimas E,Zavaliangos A.Mater Sci Eng,2000;A289:228
[19]Hu H Q.Metal Solidification Principle.Beijing:Mechan- ical Industry Press,1991:26 (胡汉起.金属凝固原理.北京:机械工业出版社,1991:26)
[20]Kang M K,Kim D Y,Hwang N M.J Euro Ceram Soc, 2002;22:603
[21]Chen T J,Hao Y,Sun J.J Mater Sci Technol,2002;18: 481
[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[3] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[4] FANG Yuanzhi, DAI Guoqing, GUO Yanhua, SUN Zhonggang, LIU Hongbing, YUAN Qinfeng. Effect of Laser Oscillation on the Microstructure and Mechanical Properties of Laser Melting Deposition Titanium Alloys[J]. 金属学报, 2023, 59(1): 136-146.
[5] LI Zhao, JIANG He, WANG Tao, FU Shuhong, ZHANG Yong. Microstructure Evolution of GH2909 Low Expansion Superalloy During Heat Treatment[J]. 金属学报, 2022, 58(9): 1179-1188.
[6] LIANG Chen, WANG Xiaojuan, WANG Haipeng. Formation Mechanism of B2 Phase and Micro-Mechanical Property of Rapidly Solidified Ti-Al-Nb Alloy[J]. 金属学报, 2022, 58(9): 1169-1178.
[7] MA Minjing, QU Yinhu, WANG Zhe, WANG Jun, DU Dan. Dynamics Evolution and Mechanical Properties of the Erosion Process of Ag-CuO Contact Materials[J]. 金属学报, 2022, 58(10): 1305-1315.
[8] XU Jinghui, LI Longfei, LIU Xingang, LI Hui, FENG Qiang. Thermal-Stress Coupling Effect on Microstructure Evolution of a Fourth-Generation Nickel-Based Single-Crystal Superalloy at 1100oC[J]. 金属学报, 2021, 57(2): 205-214.
[9] LIU Chao, YAO Zhihao, GUO Jing, PENG Zichao, JIANG He, DONG Jianxin. Microstructure Evolution Behavior of Powder Superalloy FGH4720Li at Near Service Temperature[J]. 金属学报, 2021, 57(12): 1549-1558.
[10] LIU Chenxi, MAO Chunliang, CUI Lei, ZHOU Xiaosheng, YU Liming, LIU Yongchang. Recent Progress in Microstructural Control and Solid-State Welding of Reduced Activation Ferritic/Martensitic Steels[J]. 金属学报, 2021, 57(11): 1521-1538.
[11] WU Yun, LIU Yahui, KANG Maodong, GAO Haiyan, WANG Jun, SUN Baode. Microstructure Evolution of K4169 Alloy During Cyclic Loading[J]. 金属学报, 2020, 56(9): 1185-1194.
[12] WANG Tao,WAN Zhipeng,LI Zhao,LI Peihuan,LI Xinxu,WEI Kang,ZHANG Yong. Effect of Heat Treatment Parameters on Microstructure and Hot Workability of As-Cast Fine Grain Ingot of GH4720Li Alloy[J]. 金属学报, 2020, 56(2): 182-192.
[13] JIANG He,DONG Jianxin,ZHANG Maicang,YAO Zhihao,YANG Jing. Stress Relaxation Mechanism for Typical Nickel-Based Superalloys Under Service Condition[J]. 金属学报, 2019, 55(9): 1211-1220.
[14] Yingjun GAO, Yujiang LU, Lingyi KONG, Qianqian DENG, Lilin HUANG, Zhirong LUO. Phase Field Crystal Model and Its Application for Microstructure Evolution of Materials[J]. 金属学报, 2018, 54(2): 278-292.
[15] Zongyi MA, Qiao SHANG, Dingrui NI, Bolv XIAO. Friction Stir Welding of Magnesium Alloys: A Review[J]. 金属学报, 2018, 54(11): 1597-1617.
No Suggested Reading articles found!