Please wait a minute...
Acta Metall Sin  2008, Vol. 44 Issue (8): 911-916     DOI:
Research Articles Current Issue | Archive | Adv Search |
EFFECTS OF Er ON THE MICROSTRUCTURE AND MECHANICAL PROPERTIES OF AS-CAST Al-Mg-Mn-Zn-Sc-Zr-(Ti) FILLER METALS
Yang Fu-Bao;;;
北京有色金属研究总院
Cite this article: 

Yang Fu-Bao. EFFECTS OF Er ON THE MICROSTRUCTURE AND MECHANICAL PROPERTIES OF AS-CAST Al-Mg-Mn-Zn-Sc-Zr-(Ti) FILLER METALS. Acta Metall Sin, 2008, 44(8): 911-916 .

Download:  PDF(1926KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The microstructure and mechanical properties of Al-Mg-Mn-Zn filler alloys microalloyed by Scandium (Sc), Zirconium (Zr) , Erbium (Er) and Titanium (Ti) were investigated with OM, SEM, SEM and tensile tests. On the basis of the effective grain refinement, the influences of Er element and coexistence of Er and Ti elements on grain boundary morphologies and phase distribution in grain boundaries, as well as their effects on the mechanical properties of experimental alloys, have been emphatically researched. The results indicate that, for the refined Al-Mg alloys by Sc+Zr, adding minor Er element can enhance the grain refinement of alloys, thus improve both the strength and ductility, and ultimately produce Al3Er phase discontinuously distributing in the grain boundaries. The combinational addition of Er and Ti elements can led to the precipitation of (Al,Mg)20Ti2Er intermetallic compound particles with 5~10μm in size and square shape, which distribute in grain boundaries and give some contribution to the improvements in both tensile strength(UTS) and yield strength(0.2YS), but lower the ductility. Coexisting of (Al,Mg)20Ti2Er and Al3Er phases breaks the grain boundary succession, consequently offsets the improvement on the ductility caused by Er grain-refining, and results in the transition of tensile fractographic patterns from the mixed-fracture (intergranular and transcrystalline fractures) to the intergranular fracture.
Key words:  Al-Mg alloy      microstructure      mechanical property      interface destabilization      transcrystalline fracture      i     
Received:  14 January 2008     
ZTFLH:  TG425  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2008/V44/I8/911

[1]Chinese Welding Society.Welding Handbook.Vol.2,Bei- jing:China Machine Press,2001:522 (中国机械工程学会焊接学会.焊接手册.第2卷,北京:机械工业出版社,2001:522)
[2]Wang Y L,Qu J S,Yan C P,Hu J F.J Chin Nonferrous Met,1997;7(1):69 (王元良,屈金山,晏传鹏,胡久富.中国有色金属学报,1997;7(1):69)
[3]Yin Z M,Guo F Y,Li Z.Alum Fabr,2000;23(4):51 (尹志民,郭飞跃,李周.铝加工,2000;23(4):51)
[4]David S A,Vitek J M.Int Mater Rev,1989;34:213
[5]Gao M X,Yu H H.Hot Work Technol,2000;(3):13 (高明霞,余红华.热加工工艺,2000;(3):13)
[6]Kou S,Le Y.Metall Trans,1985;16A:1887
[7]Reddy G M,Gokhale A A,Rao K P.J Mater Sci,1997; 32:4117
[8]Ram G D J,Mitra T K,Shankar V,Sundaresan S.J Mater Process Technol,2003;142:174
[9]Norman A F,Birley S S,Prangnell P B.Sci Technol Weld Join,2003;8:235
[10]Guo X M,Yang C G,Qian B N,Xu Q,Zhang H Y.Acta Metall Sin,2005;41:397 (国旭明,杨成刚,钱百年,徐强,张洪延.金属学报,2005;41:397)
[11]Xu G F,Nie Z R,Jin T N,Yang J J,Fu J B,Yin Z M.J Chin Rare Earth Soc,2002;20:143 (徐国富,聂祚仁,金头男,杨军军,付静波,尹志民.中国稀土学报,2002;20:143)
[12]Yu S E,Wang W,Yang J J,Zou J X,Nie Z R.J Chin Rare Earth Soc,2006;24:470 (余胜文,王为,杨军军,邹景霞,聂祚仁.中国稀土学报,2006;24:470)
[13]Xing Z B,Nie Z R,Zou J X,Gao X D.J Chin Rare Earth Soc,2007;25:234 (邢泽炳,聂祚仁,邹景霞,高旭东.中国稀土学报,2007;25:234)
[14]Liu E K,Yang F B,Xu J,Shi L K.Trans Nonferrous Met Soc China,2007;17(S1):308
[15]Martinez R A,Karma A,Flemings M C.Metall Mater Trans,2006;37A:2807
[16]Raghavan V.J Phase Equilib Diffus,2005;26:180
[17]Ning Y T,Zhou X M,Dai H.Acta Metall Sin,1992;28: B95 (宁远涛,周新铭,戴红.金属学报,1992;28:B95)
[18]Norman A F,Prangnell P B,McEwen R S.Acta Mater, 1998;46:5715
[19]Li P J,Kandalova E G,Nikitinb V I,Makarenkob A G, Lutsb A R,Zhang Y F.Scr Mater,2003;49:699
[20]Nihei T,Suzuki H G,Kato M,Ma J S.Mater Trans,2004; 45:75
[21]Arsenault R J,Fishman S,Taya M.Prog Mater Sci,1994; 38:1
[22]Chu Y Y,He X L,Ke J.Chin J Mater Res,1988;(4):18 (褚幼义,贺信莱,柯俊.材料科学进展,1988;(4):18)
[23]Lathabai S,Lloyd P G.Acta Mater,2002;50:4275
[1] DU Jinhui, BI Zhongnan, QU Jinglong. Recent Development of Triple Melt GH4169 Alloy[J]. 金属学报, 2023, 59(9): 1159-1172.
[2] LI Jiarong, DONG Jianmin, HAN Mei, LIU Shizhong. Effects of Sand Blasting on Surface Integrity and High Cycle Fatigue Properties of DD6 Single Crystal Superalloy[J]. 金属学报, 2023, 59(9): 1201-1208.
[3] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[4] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[5] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[6] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[7] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[8] FENG Qiang, LU Song, LI Wendao, ZHANG Xiaorui, LI Longfei, ZOU Min, ZHUANG Xiaoli. Recent Progress in Alloy Design and Creep Mechanism of γ'-Strengthened Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1125-1143.
[9] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[10] JIANG He, NAI Qiliang, XU Chao, ZHAO Xiao, YAO Zhihao, DONG Jianxin. Sensitive Temperature and Reason of Rapid Fatigue Crack Propagation in Nickel-Based Superalloy[J]. 金属学报, 2023, 59(9): 1190-1200.
[11] MA Dexin, ZHAO Yunxing, XU Weitai, WANG Fu. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. 金属学报, 2023, 59(9): 1279-1290.
[12] CHEN Jia, GUO Min, YANG Min, LIU Lin, ZHANG Jun. Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1209-1220.
[13] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[14] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[15] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
No Suggested Reading articles found!