Please wait a minute...
Acta Metall Sin  2007, Vol. 43 Issue (5): 539-545     DOI:
Research Articles Current Issue | Archive | Adv Search |
Finite Element Analysis of Creep for Micro Stainless Steel Plate-fin Heat Exchanger
Wen-Chun JIANG
南京工业大学机械学院高温研究室
Cite this article: 

Wen-Chun JIANG. Finite Element Analysis of Creep for Micro Stainless Steel Plate-fin Heat Exchanger. Acta Metall Sin, 2007, 43(5): 539-545 .

Download:  PDF(426KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  According to Norton Creep Constitutive Equation and creep parameters of as-cast Ni-based BNi-2 filler and 0Cr18Ni9 stainless steel, 100 thousand hours creep analysis for Micro Plate-fin Heat Exchanger made of stainless steel was carried out by ABAQUS finite element code. The creep strain and stress distribution of overall Micro Plate-fin Structure was obtained. The creep deformation and the most dangerous position at high temperature were predicted. Due to the mismatch of mechanical property between brazing filler metal and base metal, the welding residual stress was generated inevitably during the brazing process, which has great influence on the creep deformation and life. Especially in the fillet, the creep strain and stress distribution is inhomogeneous and concentrated. In the interface, the stress and strain show discontinuous and uncoordinated, which have great effect on creep failure.
Key words:  Plate-fin structure      Brazing      Residual Stress      Creep      
Received:  20 September 2006     
ZTFLH:  TG111.8  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2007/V43/I5/539

[1] Oyakawa K, Islam Y. J Therm Sci, 2006; 15: 145
[2] Tutar M, Akkoca A. Numer Heat Transfer, 2004; 46: 301.
[3] Li W J, Zhou Y Z. Int J Heat Mass Transfer, 2006; 49: 1667
[4] Franco A, Giannini N. Appl Thermal Eng, 2005; 25: 1293
[5] Chen H, Gong J M, Tu S T. In: Sih G C, Tu S T, Wang Z D, eds., Multiscale Damage Related to Environment Assisted Cracking, Zhengzhou: East China University of Sci-entic and Technology Press, 2005: 145
[6] Wang F J, Qian Y Y, Ma X. Acta Metall Sin, 2005; 41: 775 (王凤江,钱乙余,马鑫.金属学报,2005;41:775)
[7] Feng X S, Chen Y B, Li L Q. Acta Metall Sin, 2006; 42: 882 (封小松,陈彦宾.李俐群.金属学报, 2006;42:882)
[8] Wu C Z, Chen J, Chen H N, Lin Q H. Trans Chin Weld Inst, 2006; 27(1): 93 (吴昌忠,陈静,陈怀宁,林泉洪.焊接学报,2006;27(1): 93)
[9] Mackerle J. Modell Simul Mater Sci Ehg, 2002; 10: 637
[10] Nowacki J, Kawiak M. J Mater Process Technol, 2004; 157: 584
[11] Bach F W, Weinert K, Deisser T A. Adv Eng Mater, 2004; 6: 153
[12] Rathbun H J, Wei Z, He M Y. Zok F W, Evans A G, Sypeck D J, Wadley H N G. J Appl Mech-Trans ASME, 2004; 71: 368
[13] Hyde T H, Becker A A, Sun W, Williams J A. Int J Pressure Vessel Piping, 2006; 83: 853
[14] Becker A A, Hyde T H, Sun W, Andersson P. Comput Mater Sci, 2002; 25(1-2): 34
[15] Shi J, Tu S T, Gong J M. Mater Mech Eng, 2005; 29(7): 20 (史进,涂善东,巩建鸣.机械工程材料, 2005;29(7):20)
[1] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[2] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[3] CHEN Jia, GUO Min, YANG Min, LIU Lin, ZHANG Jun. Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1209-1220.
[4] DU Jinhui, BI Zhongnan, QU Jinglong. Recent Development of Triple Melt GH4169 Alloy[J]. 金属学报, 2023, 59(9): 1159-1172.
[5] FENG Qiang, LU Song, LI Wendao, ZHANG Xiaorui, LI Longfei, ZOU Min, ZHUANG Xiaoli. Recent Progress in Alloy Design and Creep Mechanism of γ'-Strengthened Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1125-1143.
[6] LI Shilei, LI Yang, WANG Youkang, WANG Shengjie, HE Lunhua, SUN Guang'ai, XIAO Tiqiao, WANG Yandong. Multiscale Residual Stress Evaluation of Engineering Materials/Components Based on Neutron and Synchrotron Radiation Technology[J]. 金属学报, 2023, 59(8): 1001-1014.
[7] WANG Chongyang, HAN Shiwei, XIE Feng, HU Long, DENG Dean. Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel[J]. 金属学报, 2023, 59(12): 1613-1623.
[8] ZHANG Kaiyuan, DONG Wenchao, ZHAO Dong, LI Shijian, LU Shanping. Effect of Solid-State Phase Transformation on Stress and Distortion for Fe-Co-Ni Ultra-High Strength Steel Components During Welding and Vacuum Gas Quenching Processes[J]. 金属学报, 2023, 59(12): 1633-1643.
[9] LU Haifei, LV Jiming, LUO Kaiyu, LU Jinzhong. Microstructure and Mechanical Properties of Ti6Al4V Alloy by Laser Integrated Additive Manufacturing with Alternately Thermal/Mechanical Effects[J]. 金属学报, 2023, 59(1): 125-135.
[10] LI Xiaolin, LIU Linxi, LI Yating, YANG Jiawei, DENG Xiangtao, WANG Haifeng. Mechanical Properties and Creep Behavior of MX-Type Precipitates Strengthened Heat Resistant Martensite Steel[J]. 金属学报, 2022, 58(9): 1199-1207.
[11] WU Jin, YANG Jie, CHEN Haofeng. Fracture Behavior of DMWJ Under Different Constraints Considering Residual Stress[J]. 金属学报, 2022, 58(7): 956-964.
[12] GAO Chuan, DENG Yunlai, WANG Fengquan, GUO Xiaobin. Effect of Creep Aging on Mechanical Properties of Under-Aged 7075 Aluminum Alloy[J]. 金属学报, 2022, 58(6): 746-759.
[13] PENG Zichao, LIU Peiyuan, WANG Xuqing, LUO Xuejun, LIU Jian, ZOU Jinwen. Creep Behavior of FGH96 Superalloy at Different Service Conditions[J]. 金属学报, 2022, 58(5): 673-682.
[14] ZHANG Xinfang, XIANG Siqi, YI Kun, GUO Jingdong. Controlling the Residual Stress in Metallic Solids by Pulsed Electric Current[J]. 金属学报, 2022, 58(5): 581-598.
[15] SU Kaixin, ZHANG Jiwang, ZHANG Yanbin, YAN Tao, LI Hang, JI Dongdong. High-Cycle Fatigue Properties and Residual Stress Relaxation Mechanism of Micro-Arc Oxidation 6082-T6 Aluminum Alloy[J]. 金属学报, 2022, 58(3): 334-344.
No Suggested Reading articles found!