Please wait a minute...
Acta Metall Sin  2006, Vol. 42 Issue (9): 998-1002     DOI:
Research Articles Current Issue | Archive | Adv Search |
NUMERICAL SIMULATION OF DYNAMIC RECRYSTALLIZATION AND HARDNESS DISTRIBUTION IN FRICTION STIR WELDING PROCESS
Zhang Zhao; Zhang Hongwu
大连理工大学工程力学系工业装备与结构分析国家重点实验室;大连 116024
Cite this article: 

Zhang Zhao; Zhang Hongwu. NUMERICAL SIMULATION OF DYNAMIC RECRYSTALLIZATION AND HARDNESS DISTRIBUTION IN FRICTION STIR WELDING PROCESS. Acta Metall Sin, 2006, 42(9): 998-1002 .

Download:  PDF(202KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Elastic viscoplastic rate dependent constitutive model was used to simulate the friction stir welding process. The effect of process parameters on the continuous dynamic recrystallization phenomenon and hardness in the nugget zone was studied in details. Results indicate that the distributions of microhardness on the top surface and on the bottom surface of the friction stir weld are different. The former exhibits that the microhardness near the welding line is smaller, and the one outside of the nugget zone becomes bigger and then is equal to the hardness of the parent metal, which can be fitted well with the experimental tests. For the latter the above distribution law is not exhibited. The rotational speed of the welding tool only has little effect on the hardness distribution but the hardness in the nugget zone can be increased with the increase of the translational speed of the welding tool. The grain size near the bottom surface in the nugget zone is smaller than that in the middle of the weld. The size of the grain in the nugget zone becomes more homogeneous with the increase of the angular velocity of the pin.
Key words:  friction stir welding      numerical simulation      dynamic recrystallization      
Received:  15 December 2005     
ZTFLH:  TG407  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2006/V42/I9/998

[1]Mishra R S,Ma Z Y.Meter Sci Eng,2005;R50:1
[2]Zhang H W,Zhang Z,Chen J T.Acta Metall Sin,2005;41:853(张洪武,张昭,陈金涛.金属学报,2005;41:853)
[3]Zhang H W,Zhang Z,Chen J T.Mater Sci Eng,2005;A403:340
[4]Zhang H W,Zhang Z,Chen J T.Trans Chin Weld Inst,2005;26(9):13(张洪武,张昭,陈金涛.焊接学报,2005;26(9):13)
[5]Zhang Z,Chen J T,Zhang H W.In:Batra R C,Qian L F,Zhang Y L,Li X N,Tso S K,eds.,Int Conf on Mechanical Engineering and Mechanics,Nanjing:Science Press and Science Press USA Inc.,2005:1338
[6]Zhang Z,Chen J T,Zhang H W.J Aeronaut Mater,2005;25(6):33(张昭,陈金涛,张洪武.航空材料学报,2005;25(6):33)
[7]Deng X M,Xu S W.J Manuf Process,2004; 6(2):125
[8]Colligan K.Weld J,1999; 78:2295
[9]Guerra M,Schmidt C,McClure J C,Murr L E,Nunes A C.Mater Charact,2003; 49:95
[10]Ma Z Y,Mishra R S,Mahoney M W.Acta Mater,2002;50:4419
[11]Murr L E,Liu G,McClure J C.J Mater Sci Lett,1997;16:1801
[12]Li Y,Murr L E,McClure J C.Mater Sci Eng,1999; A271:213
[13]Fratini L,Buffa G.Int J Mach Tools Manuf,2005; 45:1188
[14]Ponthot J P.J Mater Process Technol,1998; 80-81:628
[15]Belytschko T,Liu W K,Moran B.Nonlinear Finite Elements for Continua and Structures.New York:John Wiley,2000:289
[16]Simo J C,Hughes T J R.Computational Inelasticity.New York:Springer,1998:143
[17]Lenard J G,Pietrzyk M,Cser L.Mathematical and Physical Simulation of the Properties of Hot Rolled Products.Amsterdam:Elsevier,1999:52
[18]Zhang B,Baker T N.J Mater Process Technol,2004; 153-154:881
[19]Park S H C,Sato Y S,Kokawa H.J Mater Sci,2003; 38:4379
[20]Brown W F,Mindlin J H,Ho C Y.Aerospace Structural Metals Handbook.Vol.3,West Lafayette:Purdue University,1993:8
[21]McCiure J C,Feng Z,Tang W,Gould J E,Murr L E,Guo X.In:Vitek J M,ed.,Proc 5th Int Conf on Trends in Welding Research,Pine Mountain:ASM International,1998:590
[22]Colegrove P,Painter M,Graham D,Miller T.Proc 2nd Int Symp on Friction Stir Welding,Gothenburg:TWI center,2000:162
[23]Marzoli L M,Strombeck A V,Dos Santos J F,Gambaro C,Volpone L M.Compos Sci Technol,2006; 66:363
[1] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[2] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[3] ZHANG Kaiyuan, DONG Wenchao, ZHAO Dong, LI Shijian, LU Shanping. Effect of Solid-State Phase Transformation on Stress and Distortion for Fe-Co-Ni Ultra-High Strength Steel Components During Welding and Vacuum Gas Quenching Processes[J]. 金属学报, 2023, 59(12): 1633-1643.
[4] WANG Chongyang, HAN Shiwei, XIE Feng, HU Long, DENG Dean. Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel[J]. 金属学报, 2023, 59(12): 1613-1623.
[5] LOU Feng, LIU Ke, LIU Jinxue, DONG Hanwu, LI Shubo, DU Wenbo. Microstructures and Formability of the As-Rolled Mg- xZn-0.5Er Alloy Sheets at Room Temperature[J]. 金属学报, 2023, 59(11): 1439-1447.
[6] XIA Dahai, DENG Chengman, CHEN Ziguang, LI Tianshu, HU Wenbin. Modeling Localized Corrosion Propagation of Metallic Materials by Peridynamics: Progresses and Challenges[J]. 金属学报, 2022, 58(9): 1093-1107.
[7] WU Caihong, FENG Di, ZANG Qianhao, FAN Shichun, ZHANG Hao, LEE Yunsoo. Microstructure Evolution and Recrystallization Behavior During Hot Deformation of Spray Formed AlSiCuMg Alloy[J]. 金属学报, 2022, 58(7): 932-942.
[8] REN Shaofei, ZHANG Jianyang, ZHANG Xinfang, SUN Mingyue, XU Bin, CUI Chuanyong. Evolution of Interfacial Microstructure of Ni-Co Base Superalloy During Plastic Deformation Bonding and Its Bonding Mechanism[J]. 金属学报, 2022, 58(2): 129-140.
[9] JIANG Weining, WU Xiaolong, YANG Ping, GU Xinfu, XIE Qingge. Formation of Dynamic Recrystallization Zone and Characteristics of Shear Texture in Surface Layer of Hot-Rolled Silicon Steel[J]. 金属学报, 2022, 58(12): 1545-1556.
[10] HU Long, WANG Yifeng, LI Suo, ZHANG Chaohua, DENG Dean. Study on Computational Prediction About Microstructure and Hardness of Q345 Steel Welded Joint Based on SH-CCT Diagram[J]. 金属学报, 2021, 57(8): 1073-1086.
[11] LI Zihan, XIN Jianwen, XIAO Xiao, WANG Huan, HUA Xueming, WU Dongsheng. The Arc Physical Characteristics and Molten Pool Dynamic Behaviors in Conduction Plasma Arc Welding[J]. 金属学报, 2021, 57(5): 693-702.
[12] NI Ke, YANG Yinhui, CAO Jianchun, WANG Liuhang, LIU Zehui, QIAN Hao. Softening Behavior of 18.7Cr-1.0Ni-5.8Mn-0.2N Low Nickel-Type Duplex Stainless Steel During Hot Compression Deformation Under Large Strain[J]. 金属学报, 2021, 57(2): 224-236.
[13] HE Changshu, QIE Mofan, ZHANG Zhiqiang, ZHAO Xiang. Effect of Axial Ultrasonic Vibration on Metal Flow Behavior During Friction Stir Welding[J]. 金属学报, 2021, 57(12): 1614-1626.
[14] LIU Chenxi, MAO Chunliang, CUI Lei, ZHOU Xiaosheng, YU Liming, LIU Yongchang. Recent Progress in Microstructural Control and Solid-State Welding of Reduced Activation Ferritic/Martensitic Steels[J]. 金属学报, 2021, 57(11): 1521-1538.
[15] WANG Fuqiang, LIU Wei, WANG Zhaowen. Effect of Local Cathode Current Increasing on Bath-Metal Two-Phase Flow Field in Aluminum Reduction Cells[J]. 金属学报, 2020, 56(7): 1047-1056.
No Suggested Reading articles found!