Please wait a minute...
Acta Metall Sin  2006, Vol. 42 Issue (8): 820-826     DOI:
Research Articles Current Issue | Archive | Adv Search |
THE EFFECT OF Nb ON THE OXIDATION BEHAVIOR OF TiNiAl ALLOYS
Xinqing Zhao
北京航空航天大学
Cite this article: 

Xinqing Zhao. THE EFFECT OF Nb ON THE OXIDATION BEHAVIOR OF TiNiAl ALLOYS. Acta Metall Sin, 2006, 42(8): 820-826 .

Download:  PDF(3485KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The cyclic oxidation behavior of Ti50Ni44Al6 and Ti50Ni41Al6Nb3 alloys at 1073 K in air have been investigated. The addition of Nb could improve the oxidation resistance of the alloys. During the oxidation of Ti50Ni44Al6 alloy, both internal and external oxidation were observed, forming TiO2/Al2NiO4 and TiNiO3, respectively. The oxidation kinetics of the Ti50Ni44Al6 obeys linear law. After addition of Nb, only external oxidation occurs during the oxidation of Ti50Ni41Al6Nb3, forming an oxide mainly composed of TiO2. The oxidation kinetics obeys parabolic law. The mechanism for the improvement of oxidation by Nb addition was discussed. Nb impedes the inward diffusion of oxygen and the outward diffusion of metallic elements, resulting in a deceleration of the oxidation.
Key words:  TiNiAl      Nb      high temperature oxidation      
Received:  07 November 2005     
ZTFLH:  TG146.2  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2006/V42/I8/820

[1]Otsuka K,Wayman C M.Shape Memory Materials.London:Cambridge University Press,1998:1
[2]Duerig T W,Melton K N,Proft J L.In:Duerig T W,ed.,Engineering Aspects of Shape Memory Alloys,London:Btterworth-Heinemann,1990:130
[3]Hsieh S F,Wu S K.J Mater Sci,1997;32:989
[4]Ohishi K,Horita Z,Nemoto M.Mater Trans JIM,1997;38:99
[5]Jung J,Ghosh G,Isheim D,Olson G B.Metall Mater Trans,2003;34A:1221
[6]Koizumi Y,Ro Y,Nakazawa S,Harada H.Mater Sci Eng,1997;A233:36
[7]Roy T K,Balasubramaniam R,Ghosh A.Metall Mater Trans,1996;27A:3993
[8]Zeng C L,Li M C,Liu G Q,Wu W T.Oxid Met,2002;58:171
[9]Firstov G S,Vitchev R G,Kumar H,Blanpain B,Humbeeck J Van.Biomaterials,2002;23:4863
[10]Varma S K,Chan A,Mahapatra B N.Oxid Met,2001;55:423
[11]Shida Y,Anada H.Oxid Met,1996;45:197
[12]Sunderkotter J D,Schmutzler H J,Haanappel V A C,Hofman R,Glatz W,Clemens H,Stroosnijder M F.Intermetallics,1997;5:525
[13]Perez P,Haanappel V A C,Stroosnijder M F.Mater Sci Eng,2000;A284:126
[14]Roy T K,Balasubramaniam R,Ghosh A.Metall Mater Trans,1996;27A:4003
[15]Jiang H R,Hirohasi M,Lu Y,Hitoshi I.Scr Mater,2002;46:639
[16]Chu C L,Wu S K,Yen Y C.Mater Sci Eng,1996;A216:195
[17]Li M S.The High Temperature Corrosion of Metals.Beijing:Metallurgical Industry Press.2001:5,63(李美栓.金属的高温腐蚀.北京:冶金工业出版社,2001:5,63)
[18]Welsh G,Kahveci A J.In:Grobstein T,Doychat J,eds.,Oxidation of High Temperature Intermetallics,Warrendale,Pennsylvania:The Minerals,Metals and Materials Society,1989:207
[19]Meier G H,Appalonia D.In:Grobstein T,Doychat J,eds.,Oxidation of High Temperature Intermetallics,Warrendale,Pennsylvania:The Minerals,Metals and Materials Society,1989:185
[1] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[2] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[3] XU Wenguo, HAO Wenjiang, LI Yingju, ZHAO Qingbin, LU Bingyu, GUO Heyi, LIU Tianyu, FENG Xiaohui, YANG Yuansheng. Effects of Trace Aluminum and Titanium on High Temper-ature Oxidation Behavior of Inconel 690 Alloy[J]. 金属学报, 2023, 59(12): 1547-1558.
[4] JIANG Jiang, HAO Shijie, JIANG Daqiang, GUO Fangmin, REN Yang, CUI Lishan. Quasi-Linear Superelasticity Deformation in an In Situ NiTi-Nb Composite[J]. 金属学报, 2023, 59(11): 1419-1427.
[5] LIANG Chen, WANG Xiaojuan, WANG Haipeng. Formation Mechanism of B2 Phase and Micro-Mechanical Property of Rapidly Solidified Ti-Al-Nb Alloy[J]. 金属学报, 2022, 58(9): 1169-1178.
[6] XIE Leipeng, SUN Wenyao, CHEN Minghui, WANG Jinlong, WANG Fuhui. Effects of Processing on Microstructures and Properties of FGH4097 Superalloy[J]. 金属学报, 2022, 58(8): 992-1002.
[7] LI Yamin, ZHANG Yaoyao, ZHAO Wang, ZHOU Shengrui, LIU Hongjun. First-Principles Study on the Effect of Cu on Nb Segregation in Inconel 718 Alloy[J]. 金属学报, 2022, 58(2): 241-249.
[8] CHEN Ruirun, CHEN Dezhi, WANG Qi, WANG Shu, ZHOU Zhecheng, DING Hongsheng, FU Hengzhi. Research Progress on Nb-Si Base Ultrahigh Temperature Alloys and Directional Solidification Technology[J]. 金属学报, 2021, 57(9): 1141-1154.
[9] JIANG Jiang, HAO Shijie, JIANG Daqiang, GUO Fangmin, REN Yang, CUI Lishan. Lüders-Like Deformation and Stress Transfer Behavior in an In Situ NiTi-NbTi Composite[J]. 金属学报, 2021, 57(7): 921-927.
[10] YANG Liang, LV Haotian, WAN Chunlei, GONG Qianming, CHEN Hao, ZHANG Chi, YANG Zhigang. Review: Mechanism of Reactive Element Effect—Oxide Pegging[J]. 金属学报, 2021, 57(2): 182-190.
[11] WANG Mingkang, YUAN Junhao, LIU Yufeng, WANG Qing, DONG Chuang, ZHANG Zhongwei. Effect of Ti on β Structural Stability and Mechanical Properties of Zr-Nb Binary Alloys[J]. 金属学报, 2021, 57(1): 95-102.
[12] WU Yun, LIU Yahui, KANG Maodong, GAO Haiyan, WANG Jun, SUN Baode. Microstructure Evolution of K4169 Alloy During Cyclic Loading[J]. 金属学报, 2020, 56(9): 1185-1194.
[13] QIAN Yue,SUN Rongrong,ZHANG Wenhuai,YAO Meiyi,ZHANG Jinlong,ZHOU Bangxin,QIU Yunlong,YANG Jian,CHENG Guoguang,DONG Jianxin. Effect of Nb on Microstructure and Corrosion Resistance of Fe22Cr5Al3Mo Alloy[J]. 金属学报, 2020, 56(3): 321-332.
[14] MA Xiaoqiang,YANG Kunjie,XU Yuqiong,DU Xiaochao,ZHOU Jianjun,XIAO Renzheng. Molecular Dynamics Simulation of DisplacementCascades in Nb[J]. 金属学报, 2020, 56(2): 249-256.
[15] Ling LI,Shenglian YAO,Xiaoli ZHAO,Jiajia YANG,Yexi WANG,Luning WANG. Fabrication and Properties of Anodic Oxide Nanotubular Arrays on Zr-17Nb Alloy[J]. 金属学报, 2019, 55(8): 1008-1018.
No Suggested Reading articles found!