Please wait a minute...
Acta Metall Sin  2006, Vol. 42 Issue (4): 415-420     DOI:
Research Articles Current Issue | Archive | Adv Search |
FATIGUE-CREEP INTERACTION LIFE PREDICTION METHOD BASED ON DUCTILITY EXHAUSTION
Zhichao Fan;;;
合肥通用机械研究所压力容器工程部
Cite this article: 

Zhichao Fan. FATIGUE-CREEP INTERACTION LIFE PREDICTION METHOD BASED ON DUCTILITY EXHAUSTION. Acta Metall Sin, 2006, 42(4): 415-420 .

Download:  PDF(808KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Ductility exhaustion theory premises that material flow caused by loads under fatigue-creep conditions can be described by dynamic viscosity, and the criterion of failure is that dynamic viscosity equals material toughness. A new fatigue-creep life prediction method has been put forward based on ductility exhaustion theory with the assumption that ductility consumption only relates to plastic strain and creep strain caused by tensile stress, and plastic strain occurs only when tensile stress equates with σmax-(σmaxσa)^1/2. The method given is applicable for stress control mode, and includes effects of stress ratio, stress rate, tensile hold time, and mean strain velocity. Applicability of the new method is assessed with fatigue, creep, and fatigue-creep data on 1.25Cr0.5Mo under stress control at 540℃, and the prediction is found to be very satisfactory with a factor of ±×1.25.
Key words:  fatigue      creep      ductility      stress control      high temperature      
Received:  28 July 2005     
ZTFLH:  O346.2  
  TG142.33  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2006/V42/I4/415

[1] Coffin L F. MPC.3, New York: ASME, 1976: 349
[2] Coffin L F. Proc Institution of Mech Engineers. London: 1974: 9, 74, 188
[3] Manson S S, Halford G R, Hirschberg M H. First Symposia On Design For Elevated Temperature Environment, New York: ASME, 1971: 12
[4] He J R. High Temperature Fatigue of Steel. Beijing: Science Press, 1988 (何晋瑞.金属高温疲劳.北京:科学出版社, 1988)
[5] Su H S, He J R. Mater Mech Eng, 1989; 4: 30 (苏翰生,何晋瑞.机械工程材料, 1989;4:30)
[6] Jeong C Y, Choi B G, Nam S W. Mater Lett, 2001; 49(1): 20
[7] Nam S W, Lee S C, Lee J M. Nuclear Eng Design, 1995; 153: 213
[8] Nam S W. Mater Sci Eng, 2002, A322: 64
[9] Goswami T. High Temp Mater Process, 1995; 14(2): 101
[10] Goswami T. High Temp Mater Process, 1996; 15(1-2): 91
[11] Goswami T. Int J Fatigue, 1997; 19: 109
[12] Chen G L, Shu G G. Proc CSEE, 1990; 10(1): 1 (陈国良,束国刚.中国电机工程学报, 1990;10(1):1)
[13] Xia Z, Kujawski D, Ellyin F. Int J Fatigue, 1996; 18: 335
[14] Fan Z C, Jiang J L. J Zhejiang Univ (Eng Sci), 2004; 38: 1190 (范志超,蒋家羚.浙江大学学报(工学版),2004;38:1190)
[1] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] FENG Qiang, LU Song, LI Wendao, ZHANG Xiaorui, LI Longfei, ZOU Min, ZHUANG Xiaoli. Recent Progress in Alloy Design and Creep Mechanism of γ'-Strengthened Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1125-1143.
[3] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[4] CHEN Jia, GUO Min, YANG Min, LIU Lin, ZHANG Jun. Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1209-1220.
[5] JIANG He, NAI Qiliang, XU Chao, ZHAO Xiao, YAO Zhihao, DONG Jianxin. Sensitive Temperature and Reason of Rapid Fatigue Crack Propagation in Nickel-Based Superalloy[J]. 金属学报, 2023, 59(9): 1190-1200.
[6] LI Jiarong, DONG Jianmin, HAN Mei, LIU Shizhong. Effects of Sand Blasting on Surface Integrity and High Cycle Fatigue Properties of DD6 Single Crystal Superalloy[J]. 金属学报, 2023, 59(9): 1201-1208.
[7] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[8] ZHANG Lu, YU Zhiwei, ZHANG Leicheng, JIANG Rong, SONG Yingdong. Thermo-Mechanical Fatigue Cycle Damage Mechanism and Numerical Simulation of GH4169 Superalloy[J]. 金属学报, 2023, 59(7): 871-883.
[9] ZHANG Bin, TIAN Da, SONG Zhuman, ZHANG Guangping. Research Progress in Dwell Fatigue Service Reliability of Titanium Alloys for Pressure Shell of Deep-Sea Submersible[J]. 金属学报, 2023, 59(6): 713-726.
[10] ZHANG Zhefeng, LI Keqiang, CAI Tuo, LI Peng, ZHANG Zhenjun, LIU Rui, YANG Jinbo, ZHANG Peng. Effects of Stacking Fault Energy on the Deformation Mechanisms and Mechanical Properties of Face-Centered Cubic Metals[J]. 金属学报, 2023, 59(4): 467-477.
[11] XU Wenguo, HAO Wenjiang, LI Yingju, ZHAO Qingbin, LU Bingyu, GUO Heyi, LIU Tianyu, FENG Xiaohui, YANG Yuansheng. Effects of Trace Aluminum and Titanium on High Temper-ature Oxidation Behavior of Inconel 690 Alloy[J]. 金属学报, 2023, 59(12): 1547-1558.
[12] QI Zhao, WANG Bin, ZHANG Peng, LIU Rui, ZHANG Zhenjun, ZHANG Zhefeng. Effects of Stress Ratio on the Fatigue Crack Growth Rate Under Steady State of Selective Laser Melted TC4 Alloy with Defects[J]. 金属学报, 2023, 59(10): 1411-1418.
[13] HAN Dong, ZHANG Yanjie, LI Xiaowu. Effect of Short-Range Ordering on the Tension-Tension Fatigue Deformation Behavior and Damage Mechanisms of Cu-Mn Alloys with High Stacking Fault Energies[J]. 金属学报, 2022, 58(9): 1208-1220.
[14] LI Xiaolin, LIU Linxi, LI Yating, YANG Jiawei, DENG Xiangtao, WANG Haifeng. Mechanical Properties and Creep Behavior of MX-Type Precipitates Strengthened Heat Resistant Martensite Steel[J]. 金属学报, 2022, 58(9): 1199-1207.
[15] SONG Wenshuo, SONG Zhuman, LUO Xuemei, ZHANG Guangping, ZHANG Bin. Fatigue Life Prediction of High Strength Aluminum Alloy Conductor Wires with Rough Surface[J]. 金属学报, 2022, 58(8): 1035-1043.
No Suggested Reading articles found!