|
|
First principle study of O2 adsorption on NiTi alloy (100) surface |
大连理工大学 |
|
Cite this article:
. First principle study of O2 adsorption on NiTi alloy (100) surface. Acta Metall Sin, 2006, 42(4): 421-425 .
|
Abstract NiTi shape memory alloy is widely used as a biomaterial for the good compatibilities of its surface titanium oxide. Oxygen adsorption on NiTi surface is important for the formation of titanium oxide. In this work, first principle pseudopotential plane wave calculations based on density functional theory and the generalized gradient approximation (GGA) have been used to study the electronic structure of NiTi (100) surface, molecular O2 and adsorption of O2 on the NiTi alloy (100) surface. The results show that Ti-terminated surface is more reactive than Ni-terminated surface. O2 is activated and will decompose upon adsorption. Among several possible adsorption configurations considered, the most stable one corresponds to bridge configuration and the top configuration is unstable. Structural and density of state (DOS) analysis shows the interaction of O atom and surface is the total contribution of valance orbital of O atom and hybridized surface orbital of NiTi alloy.
|
Received: 26 July 2005
|
|
[1] Andreasen G. Am J Orthod, 1980; 78: 528 [2] Simon M, Athanasoulis C A, Kim D, Steinberg F L, Porter D H, Byse B H, Kleshinski S, Geller S, Orron D E, Walt-man A C. Work Prog Radiol, 1989; 172: 99 [3] Pocek M, Maspes F, Masala S, Squillaci E, Assegnati G, Moraldi A, Simonetti G. Eur Radiol, 1996; 6: 230 [4] Blum U, Voshage G, Lammer J, Beyersdorf F, Tollner D, Kretschmer G, Spillner G, Polterauer P, Nagel G, Holzen- bein T, Thumher S, Langer M. New Eng J Med, 1997; 336: 13 [5] Wever D J, Veldhuizen A G, de Vries J, Busscher H J, Uges D R, van Horn J R. Biomaterials, 1998; 19: 761 [6] Christine T, Maryam T, L'Hocine Y, Luc B, Dominique L P. J Biomed Mater Res, 1998; 43: 433 [7] Ryhanen J, Niemi E, Serlo W, Niemela E, Sandvik P, Pernu H, Salo T. J Biomed Mater Res, 1997; 35: 451 [8] Gonze X, Beuken J M, Caracas R, Detraux F, Fuchs M, Rignanese G M, Sindic L, Verstraete M, Zerah G, Jollet F, Torrent M, Roy A, Mikami M, Ghosez Ph, Raty J Y, Allan D C. Comput Mater Sci, 2002; 25: 478 [9] Goedecker S. SIAM J Sci Comp, 1997; 18: 1605 [10] Payne M C, Teter M P, Allan D C, Arias T A, Joannopoulos J D. Rev Mod Phys, 1992; 64: 1045 [11] Gonze X. Phys Rev, 1996; 54B: 4383 [12] Vanderbilt D. Phys Rev, 1990; 41B: 7892 [13] Kresse G, Hafner J. J Phys-Condens Matter, 1994; 6: 8245 [14] Perdew J P, Burke K, Ernzerhof M. Phys Rev Lett, 1996; 77: 3865 [15] Perdew J P, Wang Y. Phys Rev, 1992; 45B: 13244 [16] Perdew J P, Chevary J A, Jackson K A, Pederson M R, Singh D J, Fiolhais C. Phys Rev, 1992; 46B: 6671 [17] Hammer B, Hansen L B, Norskov J K. Phys Rev, 1999; 59B: 7413 [18] Brandes EA, Brook G B. Smithells Metals Reference Book. 7th ed., London: Butterworkth-Heinemann, 1992: 361 [19] Kulkova S E, Valujsky D V, Kim J S, Lee G, Koo Y M. Phys Rev, 2002; 65B: 085410 [20] Lide D R. CRC Handbook of Chemistry and Physics. 84 ed., CRC Press, 2003: 9 [21] Xu Y, Mavrikakis M. Surf Sci, 2003; 538: 219 [22] Hua Y, Liu X, Meng C G. Yang D Z. J Mater Sci Technol, 2004; 20: 182 [23] Hua Y, Liu X, Meng C G, Yang D Z. J Wuhan Univ Technol Mater (Sci ed), 2003; 18: 6Z |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|