Please wait a minute...
Acta Metall Sin  2006, Vol. 42 Issue (4): 421-425     DOI:
Research Articles Current Issue | Archive | Adv Search |
First principle study of O2 adsorption on NiTi alloy (100) surface
大连理工大学
Cite this article: 

. First principle study of O2 adsorption on NiTi alloy (100) surface. Acta Metall Sin, 2006, 42(4): 421-425 .

Download:  PDF(781KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  NiTi shape memory alloy is widely used as a biomaterial for the good compatibilities of its surface titanium oxide. Oxygen adsorption on NiTi surface is important for the formation of titanium oxide. In this work, first principle pseudopotential plane wave calculations based on density functional theory and the generalized gradient approximation (GGA) have been used to study the electronic structure of NiTi (100) surface, molecular O2 and adsorption of O2 on the NiTi alloy (100) surface. The results show that Ti-terminated surface is more reactive than Ni-terminated surface. O2 is activated and will decompose upon adsorption. Among several possible adsorption configurations considered, the most stable one corresponds to bridge configuration and the top configuration is unstable. Structural and density of state (DOS) analysis shows the interaction of O atom and surface is the total contribution of valance orbital of O atom and hybridized surface orbital of NiTi alloy.
Key words:  NiTi shape memory alloy      surface adsorption      oxygen molecule      
Received:  26 July 2005     
ZTFLH:  TB381  
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2006/V42/I4/421

[1] Andreasen G. Am J Orthod, 1980; 78: 528
[2] Simon M, Athanasoulis C A, Kim D, Steinberg F L, Porter D H, Byse B H, Kleshinski S, Geller S, Orron D E, Walt-man A C. Work Prog Radiol, 1989; 172: 99
[3] Pocek M, Maspes F, Masala S, Squillaci E, Assegnati G, Moraldi A, Simonetti G. Eur Radiol, 1996; 6: 230
[4] Blum U, Voshage G, Lammer J, Beyersdorf F, Tollner D, Kretschmer G, Spillner G, Polterauer P, Nagel G, Holzen- bein T, Thumher S, Langer M. New Eng J Med, 1997; 336: 13
[5] Wever D J, Veldhuizen A G, de Vries J, Busscher H J, Uges D R, van Horn J R. Biomaterials, 1998; 19: 761
[6] Christine T, Maryam T, L'Hocine Y, Luc B, Dominique L P. J Biomed Mater Res, 1998; 43: 433
[7] Ryhanen J, Niemi E, Serlo W, Niemela E, Sandvik P, Pernu H, Salo T. J Biomed Mater Res, 1997; 35: 451
[8] Gonze X, Beuken J M, Caracas R, Detraux F, Fuchs M, Rignanese G M, Sindic L, Verstraete M, Zerah G, Jollet F, Torrent M, Roy A, Mikami M, Ghosez Ph, Raty J Y, Allan D C. Comput Mater Sci, 2002; 25: 478
[9] Goedecker S. SIAM J Sci Comp, 1997; 18: 1605
[10] Payne M C, Teter M P, Allan D C, Arias T A, Joannopoulos J D. Rev Mod Phys, 1992; 64: 1045
[11] Gonze X. Phys Rev, 1996; 54B: 4383
[12] Vanderbilt D. Phys Rev, 1990; 41B: 7892
[13] Kresse G, Hafner J. J Phys-Condens Matter, 1994; 6: 8245
[14] Perdew J P, Burke K, Ernzerhof M. Phys Rev Lett, 1996; 77: 3865
[15] Perdew J P, Wang Y. Phys Rev, 1992; 45B: 13244
[16] Perdew J P, Chevary J A, Jackson K A, Pederson M R, Singh D J, Fiolhais C. Phys Rev, 1992; 46B: 6671
[17] Hammer B, Hansen L B, Norskov J K. Phys Rev, 1999; 59B: 7413
[18] Brandes EA, Brook G B. Smithells Metals Reference Book. 7th ed., London: Butterworkth-Heinemann, 1992: 361
[19] Kulkova S E, Valujsky D V, Kim J S, Lee G, Koo Y M. Phys Rev, 2002; 65B: 085410
[20] Lide D R. CRC Handbook of Chemistry and Physics. 84 ed., CRC Press, 2003: 9
[21] Xu Y, Mavrikakis M. Surf Sci, 2003; 538: 219
[22] Hua Y, Liu X, Meng C G. Yang D Z. J Mater Sci Technol, 2004; 20: 182
[23] Hua Y, Liu X, Meng C G, Yang D Z. J Wuhan Univ Technol Mater (Sci ed), 2003; 18: 6Z
[1] YANG Chao, LU Haizhou, MA Hongwei, CAI Weisi. Research and Development in NiTi Shape Memory Alloys Fabricated by Selective Laser Melting[J]. 金属学报, 2023, 59(1): 55-74.
[2] CHEN Fei, QIU Pengcheng, LIU Yang, SUN Bingbing, ZHAO Haisheng, SHEN Qiang. Microstructure and Mechanical Properties of NiTi Shape Memory Alloys by In Situ Laser Directed Energy Deposition[J]. 金属学报, 2023, 59(1): 180-190.
[3] KE Changbo, CAO Shanshan, MA Xiao, HUANG Ping, ZHANG Xinping. PHASE FIELD SIMULATION OF AUTO-CATALYTIC GROWTH EFFECT OF COHERENT Ni4Ti3 PRECIPITATE IN NiTi SHAPE MEMORY ALLOY[J]. 金属学报, 2013, 49(1): 115-122.
[4] JIANG Hongjie KE Changbo CAO Shanshan MA Xiao ZHANG Xinping. PREPARATION OF NANO-SIZED SiC REINFORCED NiTi SHAPE MEMORY COMPOSITES AND THEIR MECHANICAL PROPERTIES AND DAMPING BEHAVIOR[J]. 金属学报, 2011, 47(9): 1105-1111.
[5] KE Changbo MA Xiao ZHANG Xinping. PHASE FIELD SIMULATION OF EFFECTS OF PORES ON B2-R PHASE TRANSFORMATION IN NiTi SHAPE MEMORY ALLOY[J]. 金属学报, 2011, 47(2): 129-139.
[6] KE Changbo MA Xiao ZHANG Xinping. PHASE FIELD SIMULATION OF THE EFFECT OF APPLIED EXTERNAL STRESS ON GROWTH KINETICS OF COHERENT Ni4Ti3 PRECIPITATE IN NiTi ALLOY[J]. 金属学报, 2010, 46(8): 921-929.
[7] KE Changbo MA Xiao ZHANG Xinping. PHASE FIELD SIMULATION OF GROWTH KINETICS OF COHERENT Ni4Ti3 PRECIPITATE IN NiTi SHAPE MEMORY ALLOY[J]. 金属学报, 2010, 46(1): 84-90.
[8] Hai-Chang JIANG. Ni RELEASING BEHAVIOR OF POROUS TiNi SHAPE MEMORY ALLOY[J]. 金属学报, 2008, 44(2): 198-202 .
No Suggested Reading articles found!