Please wait a minute...
Acta Metall Sin  2006, Vol. 42 Issue (4): 399-404     DOI:
Research Articles Current Issue | Archive | Adv Search |
EFFECTS OF ACTIVATING FLUXES ON TIG WELDING OF MAGNESIUM ALLOY
Liu L M; Zhang Z D; Shen Y; Wang L
大连理工大学材料系
Cite this article: 

Liu L M; Zhang Z D; Shen Y; Wang L. EFFECTS OF ACTIVATING FLUXES ON TIG WELDING OF MAGNESIUM ALLOY. Acta Metall Sin, 2006, 42(4): 399-404 .

Download:  PDF(925KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Five single activating fluxes, TiO2, Cr2O3, CdCl2, ZnCl2, AlF3, were used to investigate the effects of the coating quantity of active fluxes on TIG welding penetration of magnesium alloy. The distribution of active flux element in the weld-pool was measured by EPMA analysis. The results showed that the above activating fluxes all increased the weld penetration. Each flux has a saturation point in penetration increment. The distributions of Mg and Al elements in the weld-pool are changed in different degrees after welding with flux. No active flux element was found in the weld-pool after welding with CdCl2 and ZnCl2 fluxes, however, the elements Ti, Cr and O were observed in the weld-pool after welding with TiO2 and Cr2O3 fluxes, By the analysis, the chlorides increased weld penetration mainly due to the effect of flux on the arc, the oxide increased weld penetration mainly due to the reaction of flux with the fusion zone metal.
Key words:  A-TIG welding      magnesium alloy      the coating quantity      elementary analysis      
Received:  09 June 2005     
ZTFLH:  TG 401  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2006/V42/I4/399

[1] Leinonen J I, Karjalainen L P. In: David S A, Vitek J M eds, Proc Snd Int Conf on Trends in Welding Research. Materials Park, USA: ASM International, 1989: 387
[2] Lucas W, Howse D. Weld Met Fabrica, 1996; 64: 11
[3] Gurevich S M, Zamkov V N, Kushirenko N A. Autom Weld, 1965; 18: 1
[4] Gurevich S M, Zamkov V N. Autom Weld, 1966; 19: 14
[5] Liu F Y, Yang C L, Lin S B, Wu L, Zhang Q T. Acta Metall Sin, 2003; 39: 661 (刘凤尧,杨春利,林三宝,吴林,张清涛.金属学报,2003; 39:661)
[6] Niagaj J. Weld Int, 2003; 17: 257
[7] Pascal P, Jacques S. Mater Sci Forum, 2003; 426-432: 4087
[8] Bonnefois B, Coudreuse L, charles J. Weld Int, 2004; 18: 208
[9] Perry N, Marya S, Soutif E. In: Vitek J M, David S A, Johnson J A, Smartt H B, DebRoy T eds, Proc 5th Int Conf on Trends in Welding Research (ASM/AWS). Pine Mountain, Ga: ASM International, 1998: 520
[10] Middel W, Den Ouden G. In: Vitek J M, David S A, Johnson J A, Smartt H B, DebRoy T eds, Proc 5th Int Conf on Trends in Welding Research (ASM/AWS). Pine Mountain, Ga: ASM International, 1998: 394
[11] Marya M, Edwards G R. Weld J, 2002; 81: 291-S
[12] Marya M. Weld World, 2002; 46: 7
[13] Zhang Z D, Liu L M, Shen Y, Wang L. Chin J Nonferr Met, 2005; 15: 912 (张兆栋,刘黎明,沈勇,王来.中国有色金属学报,2005; 15:912)
[14] Zhang Z D, Liu L M, Wang L. Trans Chin Weld Inst, 2004; 25: 55 (张兆栋,刘黎明,王来.焊接学报,2004;25:55)
[15] Toshikatsu A, Tokisue H. J Jpn Inst Light Met, 1995; 45: 70 (朝比奈敏胜,时末光.轻金属, 1995;45:70)
[16] Boddy P J, Utsumi T. J Appl Phys, 1971; 42: 3369
[17] Saha M N. Philos Mag, 1920; 40: 272
[18] Lu S P, Fujii H, Sugiyama H, Tanaka M, Nogi K. Mater Trans, 2002; 43: 2926
[19] Wark K. Thermodynamics. 3rd ed, New York: McGrawHill, 1977: 833
[1] SHAO Xiaohong, PENG Zhenzhen, JIN Qianqian, MA Xiuliang. Unravelling the {101¯2} Twin Intersection Between LPSO Structure/SFs in Magnesium Alloy[J]. 金属学报, 2023, 59(4): 556-566.
[2] ZHU Yunpeng, QIN Jiayu, WANG Jinhui, MA Hongbin, JIN Peipeng, LI Peijie. Microstructure and Properties of AZ61 Ultra-Fine Grained Magnesium Alloy Prepared by Mechanical Milling and Powder Metallurgy Processing[J]. 金属学报, 2023, 59(2): 257-266.
[3] TANG Weineng, MO Ning, HOU Juan. Research Progress of Additively Manufactured Magnesium Alloys: A Review[J]. 金属学报, 2023, 59(2): 205-225.
[4] CHEN Yang, MAO Pingli, LIU Zheng, WANG Zhi, CAO Gengsheng. Detwinning Behaviors and Dynamic Mechanical Properties of Precompressed AZ31 Magnesium Alloy Subjected to High Strain Rates Impact[J]. 金属学报, 2022, 58(5): 660-672.
[5] ZENG Xiaoqin, WANG Jie, YING Tao, DING Wenjiang. Recent Progress on Thermal Conductivity of Magnesium and Its Alloys[J]. 金属学报, 2022, 58(4): 400-411.
[6] LI Shaojie, JIN Jianfeng, SONG Yuhao, WANG Mingtao, TANG Shuai, ZONG Yaping, QIN Gaowu. Multimodal Microstructure of Mg-Gd-Y Alloy Through an Integrated Simulation of Process-Structure-Property[J]. 金属学报, 2022, 58(1): 114-128.
[7] WANG Huiyuan, XIA Nan, BU Ruyu, WANG Cheng, ZHA Min, YANG Zhizheng. Current Research and Future Prospect on Low-Alloyed High-Performance Wrought Magnesium Alloys[J]. 金属学报, 2021, 57(11): 1429-1437.
[8] PAN Fusheng, JIANG Bin. Development and Application of Plastic Processing Technologies of Magnesium Alloys[J]. 金属学报, 2021, 57(11): 1362-1379.
[9] WANG Xuemei, YIN Zhengzheng, YU Xiaotong, ZOU Yuhong, ZENG Rongchang. Comparison of Corrosion Resistance of Phenylalanine, Methionine, and Asparagine-Induced Ca-P Coatings on AZ31 Magnesium Alloys[J]. 金属学报, 2021, 57(10): 1258-1271.
[10] ZHANG Yang, SHAO Jianbo, CHEN Tao, LIU Chuming, CHEN Zhiyong. Deformation Mechanism and Dynamic Recrystallization of Mg-5.6Gd-0.8Zn Alloy During Multi-Directional Forging[J]. 金属学报, 2020, 56(5): 723-735.
[11] Rongchang ZENG, Lanyue CUI, Wei KE. Biomedical Magnesium Alloys: Composition, Microstructure and Corrosion[J]. 金属学报, 2018, 54(9): 1215-1235.
[12] Yanyu LIU, Pingli MAO, Zheng LIU, Feng WANG, Zhi WANG. Theoretical Calculation of Schmid Factor and Its Application Under High Strain Rate Deformation in Magnesium Alloys[J]. 金属学报, 2018, 54(6): 950-958.
[13] Guohua WU, Yushi CHEN, Wenjiang DING. Current Research and Future Prospect on Microstructures Controlling of High Performance Magnesium Alloys During Solidification[J]. 金属学报, 2018, 54(5): 637-646.
[14] Xudong LI, Pingli MAO, Yanyu LIU, Zheng LIU, Zhi WANG, Feng WANG. Anisotropy and Deformation Mechanisms ofAs-Extruded Mg-3Zn-1Y Magnesium AlloyUnder High Strain Rates[J]. 金属学报, 2018, 54(4): 557-565.
[15] Shoumei XIONG, Jinglian DU, Zhipeng GUO, Manhong YANG, Mengwu WU, Cheng BI, Yongyou CAO. Characterization and Modeling Study on Interfacial Heat Transfer Behavior and Solidified Microstructure of Die Cast Magnesium Alloys[J]. 金属学报, 2018, 54(2): 174-192.
No Suggested Reading articles found!