Please wait a minute...
Acta Metall Sin  2006, Vol. 42 Issue (2): 191-194     DOI:
Research Articles Current Issue | Archive | Adv Search |
PORTEVIN-LE CHATELIER EFFECT OF LA41 MAGNESIUM ALLOYS
Cong Wang;;
中国科学院金属研究所
Cite this article: 

Cong Wang. PORTEVIN-LE CHATELIER EFFECT OF LA41 MAGNESIUM ALLOYS. Acta Metall Sin, 2006, 42(2): 191-194 .

Download:  PDF(414KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Uni-axial tensile deformation of LA41 magnesium alloy has been carried out and PLC phenomenon, also known as serrated flow or plastic instability, is observed. This kind of alloy exhibits negative strain rate sensitivity (SRS) at room temperature, that is, SRS is negative throughout the strain rate range from 3.33×10-4 s-1 to 6.66×10-3 s-1 at ambient temperature. Both ultimate stress and 0.2% proof stress decrease with increasing strain rate, whilst critical strain of serrated flow is found to rise with enhanced strain rate. A new explanation for this unusual phenomenon is presented. The model of dynamic strain aging (DSA) is established though thorough discussion.
Key words:  magnesium alloy      PLC phenomenon      dynamic strain aging      strain rate sensitivity      
Received:  07 June 2005     
ZTFLH:  TG146.2  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2006/V42/I2/191

[1] Rinnovatore J V, Schwartz M. J Inst Met, 1963-1964; 92: 188
[2] Wu X, Zhang J H, Liu J L, Jin T, Xu Y B, Hu Z Q. Mater Sci Eng, 2002; A325: 478
[3] Wang Z G, Liu W, Xu Y B, Zhang T Y, Zhang Y. Scr Metall Meter, 1994; 31: 1513
[4] Zhang C B, Wang H X, Wang J Y, Lai Z H. Ada Metall Sin, 1985; 21: A261(张彩碚,王洪祥,王继尧,赖祖涵.金属学报,1985;21:A261)
[5] Zhu S M, Nie J F. Scr Mater, 2004; 50: 51
[6] Corby C, Caceres C H, Lukac P. Mater Sci Eng, 2004; A387-389: 22
[7] Baird J D. Inhomogeneities of Plastic Deformation. Metals Park, Ohio: ASM; 1973: 191
[8] Penning P. Acta Metall, 1972; 20: 1169
[9] Schlipf J. Acta Metall Mater, 1992; 40: 2075
[10] van Den Brink S H. Phys Status Solidi, 1975; 30a: 469
[11] Oilman J J. J Appl Phys, 1965; 36: 3195
[12] Lloyd D J, Worthington P J, Embury J D. Philos Mag, 1970; 21: 1147
[13] Bross S, Hahner P, Steck E A. Comput Mater Sci, 2003; 26: 46
[14] Gills P P, Gilman J J, Taylor J W. Philos Mag, 1969; 20: 279
[15] Ahmadieh A, Mitchell J, Dorn J E. Trans AIME, 1965; 233: 1130
[16] Levinson D W, McPherson D J. Trans ASM, 1955; 48: 689
[17] McCormick P G. Acta Metall, 1972; 20: 351
[18] Hirth J, Lothe J. Theory of Dislocations. New York: Wiley, 1982: 575
[19] Brechet Y J M, Purdy G R. Scr Metall Mater. 1990; 24: 1831
[20] Kumar S, McShane H B. Scr Metall Mater, 1993; 28: 1149
[1] SHAO Xiaohong, PENG Zhenzhen, JIN Qianqian, MA Xiuliang. Unravelling the {101¯2} Twin Intersection Between LPSO Structure/SFs in Magnesium Alloy[J]. 金属学报, 2023, 59(4): 556-566.
[2] ZHU Yunpeng, QIN Jiayu, WANG Jinhui, MA Hongbin, JIN Peipeng, LI Peijie. Microstructure and Properties of AZ61 Ultra-Fine Grained Magnesium Alloy Prepared by Mechanical Milling and Powder Metallurgy Processing[J]. 金属学报, 2023, 59(2): 257-266.
[3] TANG Weineng, MO Ning, HOU Juan. Research Progress of Additively Manufactured Magnesium Alloys: A Review[J]. 金属学报, 2023, 59(2): 205-225.
[4] CHEN Yang, MAO Pingli, LIU Zheng, WANG Zhi, CAO Gengsheng. Detwinning Behaviors and Dynamic Mechanical Properties of Precompressed AZ31 Magnesium Alloy Subjected to High Strain Rates Impact[J]. 金属学报, 2022, 58(5): 660-672.
[5] ZENG Xiaoqin, WANG Jie, YING Tao, DING Wenjiang. Recent Progress on Thermal Conductivity of Magnesium and Its Alloys[J]. 金属学报, 2022, 58(4): 400-411.
[6] LI Shaojie, JIN Jianfeng, SONG Yuhao, WANG Mingtao, TANG Shuai, ZONG Yaping, QIN Gaowu. Multimodal Microstructure of Mg-Gd-Y Alloy Through an Integrated Simulation of Process-Structure-Property[J]. 金属学报, 2022, 58(1): 114-128.
[7] WANG Huiyuan, XIA Nan, BU Ruyu, WANG Cheng, ZHA Min, YANG Zhizheng. Current Research and Future Prospect on Low-Alloyed High-Performance Wrought Magnesium Alloys[J]. 金属学报, 2021, 57(11): 1429-1437.
[8] PAN Fusheng, JIANG Bin. Development and Application of Plastic Processing Technologies of Magnesium Alloys[J]. 金属学报, 2021, 57(11): 1362-1379.
[9] WANG Xuemei, YIN Zhengzheng, YU Xiaotong, ZOU Yuhong, ZENG Rongchang. Comparison of Corrosion Resistance of Phenylalanine, Methionine, and Asparagine-Induced Ca-P Coatings on AZ31 Magnesium Alloys[J]. 金属学报, 2021, 57(10): 1258-1271.
[10] ZHANG Yang, SHAO Jianbo, CHEN Tao, LIU Chuming, CHEN Zhiyong. Deformation Mechanism and Dynamic Recrystallization of Mg-5.6Gd-0.8Zn Alloy During Multi-Directional Forging[J]. 金属学报, 2020, 56(5): 723-735.
[11] Rongchang ZENG, Lanyue CUI, Wei KE. Biomedical Magnesium Alloys: Composition, Microstructure and Corrosion[J]. 金属学报, 2018, 54(9): 1215-1235.
[12] Yanyu LIU, Pingli MAO, Zheng LIU, Feng WANG, Zhi WANG. Theoretical Calculation of Schmid Factor and Its Application Under High Strain Rate Deformation in Magnesium Alloys[J]. 金属学报, 2018, 54(6): 950-958.
[13] Guohua WU, Yushi CHEN, Wenjiang DING. Current Research and Future Prospect on Microstructures Controlling of High Performance Magnesium Alloys During Solidification[J]. 金属学报, 2018, 54(5): 637-646.
[14] Xudong LI, Pingli MAO, Yanyu LIU, Zheng LIU, Zhi WANG, Feng WANG. Anisotropy and Deformation Mechanisms ofAs-Extruded Mg-3Zn-1Y Magnesium AlloyUnder High Strain Rates[J]. 金属学报, 2018, 54(4): 557-565.
[15] Shoumei XIONG, Jinglian DU, Zhipeng GUO, Manhong YANG, Mengwu WU, Cheng BI, Yongyou CAO. Characterization and Modeling Study on Interfacial Heat Transfer Behavior and Solidified Microstructure of Die Cast Magnesium Alloys[J]. 金属学报, 2018, 54(2): 174-192.
No Suggested Reading articles found!