Please wait a minute...
Acta Metall Sin  2006, Vol. 42 Issue (2): 195-200     DOI:
Research Articles Current Issue | Archive | Adv Search |
Discussion of energy model for low cycle fatigue life prediction
Chen Ling
浙江大学化工机械研究所
Cite this article: 

Chen Ling. Discussion of energy model for low cycle fatigue life prediction. Acta Metall Sin, 2006, 42(2): 195-200 .

Download:  PDF(507KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The laws of entropy conservation and energy conservation are applicable to any system. In this paper, a new energy model for low cycle fatigue (LCF) life prediction has been derived from the above two laws. Based on this model, an investigation of cumulative damage was also accomplished. By low cycle fatigue experiment of 316L steel under stress control at 420℃, the prediction of fatigue life and residual life has been carried out by the new energy model and the principle of linear accumulation damage based on this model. The predicted results have been compared with the experimental data. A good agreement is noted between the predicted and experimental results.
Key words:  low cycle fatigue      entropy conservation      energy conservation      strain energy      cumulative damage      
Received:  29 April 2005     
ZTFLH:  O346.2  
  TG142.71  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2006/V42/I2/195

[1] Kwofie S. Int J Fatigue, 2001; 23: 829
[2] Smith K N, Watson P, Topper T H. J Mater, 1970; 5: 767
[3] Mrozinski S, Topolinski T. J Theor Appl Mech, 1999; 37: 223
[4] Lefebvre D, Neale K W, Ellyin F. J Eng Mater Technol, 1988; 103(1): 1
[5] Tchankov D S, Vesselinov K V. Int J Pressure Vessel Piping, 1998; 75: 955
[6] Feltner C E, Morrow J D. J Basic Eng, 1961; 83(3): 15
[7] Xiao L, Gu H C. J Eng Mater Technol, 1998; 120(2): 114
[8] Park J, Nelson D. Int J Fatigue, 2000; 22: 23
[9] Zhang W X, Chen F, Guo C B, Yu Q. Pressure Vessel Technol, 2002; 19(6): 4(张文孝,陈飞,郭成壁,于强.压力容器,2002;19(6):4)
[10] Ellyin F. J Eng Mater Technol, 1985; 107(4): 119
[11] Sander B I. Fundemental of Cyclic Stress and Strain. Wisconsin: The University of Wisconsin Press, 1972: 52
[12] Xiao T, De W, Hao X. Int J Fatigue, 1989; 11: 353
[13] Xia Z, Kujawski D, Ellyin F. Int J Fatigue, 1996; 18: 335
[14] Ellyin F, Golos K, Xia Z. J Eng Mater Technol, 1991; 113(1): 112
[15] Ellyin F, Xia Z. J Eng Mater Technol, 1993; 115(4): 411
[16] Ellyin F. Mech Res Commun, 1974; 1(4): 219
[17] Tong X Y, Wang D J, Xu H. Acta Metall Sin, 1992; 28: A163(童小燕,王德俊,徐灏.金属学报,1992;28:A163)
[18] Lemaitre J, Chobche J L. Mechanics of Solids Materials. Cambridge: Cambridge University Press, 1990: 65
[19] Yang G S. Damage Mechanics and Composite Material Damage. Beijing: National Defence Industry Press, 1995: 23(杨光松.损伤力学与复合材料损伤.北京:国防工业出版社,1995:23)
[20] Tadeusz L. Int J Fatigue, 2001; 23: 467
[21] Wang R, Huang W B, Huang Z P. Introduction of Plasticity Mechanics. Beijing: Peking University Press, 1992: 1(王仁,黄文彬,黄筑平.塑性力学引论.北京:北京大学出版社,1992:11
[22] Wu D G, Zhang B. Calculus (I). Hangzhou: Zhejiang University Press, 1995: 183(吴迪光,张彬.微积分学(上).杭州:浙江大学出版社,1995:183)
[23] Morrow J. ASTM STP 378, 1965: 45
[24] Golos K, Ellyin F. Theor Appl Fract Mech, 1987; 7: 169
[25] Zhao S B. Design for Fatigue Resistance. Beijing: China Machine Press, 1994: 100(赵少汴.抗疲劳设计.北京:机械工业出版社,1994:100)
[26] Chen L, Jiang J L. J Mech Strength, 2005; 27(1): 121(陈凌,蒋家羚.机械强度,2005;27(1):121)
[27] Chen L, Jiang J L. Pressure Vessel Technol, 2003; 20(10): 11 (陈凌,蒋家羚.压力容器,2003;20(10):11)T
[1] CHEN Wei, CHEN Hongcan, WANG Chenchong, XU Wei, LUO Qun, LI Qian, CHOU Kuochih. Effect of Dilatational Strain Energy of Fe-C-Ni System on Martensitic Transformation[J]. 金属学报, 2022, 58(2): 175-183.
[2] Jinlan AN,Lei WANG,Yang LIU,Guohua XU,Guangpu ZHAO. INFLUENCES OF LONG-TERM AGING ON MICRO- STRUCTURE EVOLUTION AND LOW CYCLE FATIGUE BEHAVIOR OF GH4169 ALLOY[J]. 金属学报, 2015, 51(7): 835-843.
[3] HAN Guomin, HAN Zhiqiang, Alan A. Luo, Anil K. Sachdev, LIU Baicheng. PHASE FIELD SIMULATION ON MORPHOLOGY OF CONTINUOUS PRECIPITATE Mg17Al12IN Mg-Al ALLOY[J]. 金属学报, 2013, 49(3): 277-283.
[4] YU Huichen, DONG Chengli, JIAO Zehui, KONG Fantao, CHEN Yuyong, SU Yongjun. HIGH TEMPERATURE CREEP AND FATIGUE BEHAVIOR AND LIFE PREDICTION METHOD  OF A TiAl ALLOY[J]. 金属学报, 2013, 49(11): 1311-1317.
[5] ZHOU Guangzhao, WANG Yongxin, CHEN Zheng. PHASE-FIELD METHOD SIMULATION OF THE EFFECT OF ELASTIC STRAIN ENERGY ON COARSENING DYNAMICS DURING THE α2O PHASE TRANSFORMATION IN Ti-Al-Nb ALLOYS[J]. 金属学报, 2012, 48(4): 485-491.
[6] ZOU Guangping LU Jie CAO Yang LIU Baojun. BENDING FATIGUE DAMAGE MODELS OF STEEL HONEYCOMB SANDWICH PANELS[J]. 金属学报, 2011, 47(9): 1181-1187.
[7] HUANG Zhiwei; YUAN Fuhe; WANG Zhongguang; ZHU Shijie; WANG Fugang. Low Cycle Fatigue Behavior of A Cast Nickel Base Superalloy M963 at Elevated Temperature[J]. 金属学报, 2007, 43(7): 678-682 .
[8] LU Yanli; CHEN Zheng; LI Yongsheng; WANG Yongxin. MICROSCOPIC PHASE-FIELD SIMULATION COUPLED WITH ELASTIC STRAIN ENERGY FOR γ′(Ni3Al) PRICIPITATION IN Ni-Al ALLOY[J]. 金属学报, 2007, 43(3): 291-296 .
[9] . [J]. 金属学报, 2007, 43(10): 1025-1030 .
[10] YAO Jun; GUO Jianting; YUAN Chao; LI Zhijun. Low Cycle Fatigue Behavior Of Cast Nickel Base Superalloy K52[J]. 金属学报, 2005, 41(4): 357-362 .
[11] YU Huichen; SUN Yanguo; XIE Shishu; K. TANAKA. Low Cycle Fatigue Crack Propagation in Stainless Steel Under Combined Torsion and Tension[J]. 金属学报, 2005, 41(1): 73-.
[12] JIANG Wenhui; YAO Xiangdong; GUAN Hengrong; HU Zhuangqi ( Institute of Metal Research; The Chinese Academy of Sciences; Shenyang 110015)(Shenyang Polytechnic University; Shenyang 110023). HIGH TEMPERATUER LOW CYCLE FATIGUE OF DZ40M COBALT-BASE SUPERALLOY[J]. 金属学报, 1998, 34(4): 378-383.
[13] WU Ximao;Al Suhua;ZHANG Yun;WANG Zhonmang;HAN Xinglin (State Key Laboratory for Fatigue and Fracture of Materials; Institute of Metal Research; Chinese Academy of Sciences; Shenyang 110015) (Shenyang Polytechnic University. Shenyang 110023). THE LOW CYCLE FATIGUE BEHAVIOUR FOR 8090 Al-Li ALLOYS[J]. 金属学报, 1997, 33(7): 702-708.
[14] WANG Jianqiu; LI Jin; KE Wei(State Key Laboratory of Corrosion and Protection;Institute of Corrosion and Protection of Metals; Chinese Academy of Sciences;Shenyang 110015)(Manuscript received 1995-12-22). EFFECT OF POLARIZATION ON DISLOCATION BEHAVIOURS OF A537 STEEL DURING LOW CYCLE CORROSION FATIGUE[J]. 金属学报, 1996, 32(7): 730-734.
[15] WANG Jianqiu; LI Jin; KE Wei(State Key Laboratory of Corrosion and Protection; Institute of Corrosion and Protection of Metals; Chinese Academy of Sciences; Shenyang 110015). CRACK INITIATION OF A537 STEEL IN 3.5%NaCl SOLUTION DURING LOW CYCLE FATIGUE[J]. 金属学报, 1996, 32(6): 611-616.
No Suggested Reading articles found!