Abstract The laws of entropy conservation and energy conservation are applicable to any system. In this paper, a new energy model for low cycle fatigue (LCF) life prediction has been derived from the above two laws. Based on this model, an investigation of cumulative damage was also accomplished. By low cycle fatigue experiment of 316L steel under stress control at 420℃, the prediction of fatigue life and residual life has been carried out by the new energy model and the principle of linear accumulation damage based on this model. The predicted results have been compared with the experimental data. A good agreement is noted between the predicted and experimental results.
[1] Kwofie S. Int J Fatigue, 2001; 23: 829 [2] Smith K N, Watson P, Topper T H. J Mater, 1970; 5: 767 [3] Mrozinski S, Topolinski T. J Theor Appl Mech, 1999; 37: 223 [4] Lefebvre D, Neale K W, Ellyin F. J Eng Mater Technol, 1988; 103(1): 1 [5] Tchankov D S, Vesselinov K V. Int J Pressure Vessel Piping, 1998; 75: 955 [6] Feltner C E, Morrow J D. J Basic Eng, 1961; 83(3): 15 [7] Xiao L, Gu H C. J Eng Mater Technol, 1998; 120(2): 114 [8] Park J, Nelson D. Int J Fatigue, 2000; 22: 23 [9] Zhang W X, Chen F, Guo C B, Yu Q. Pressure Vessel Technol, 2002; 19(6): 4(张文孝,陈飞,郭成壁,于强.压力容器,2002;19(6):4) [10] Ellyin F. J Eng Mater Technol, 1985; 107(4): 119 [11] Sander B I. Fundemental of Cyclic Stress and Strain. Wisconsin: The University of Wisconsin Press, 1972: 52 [12] Xiao T, De W, Hao X. Int J Fatigue, 1989; 11: 353 [13] Xia Z, Kujawski D, Ellyin F. Int J Fatigue, 1996; 18: 335 [14] Ellyin F, Golos K, Xia Z. J Eng Mater Technol, 1991; 113(1): 112 [15] Ellyin F, Xia Z. J Eng Mater Technol, 1993; 115(4): 411 [16] Ellyin F. Mech Res Commun, 1974; 1(4): 219 [17] Tong X Y, Wang D J, Xu H. Acta Metall Sin, 1992; 28: A163(童小燕,王德俊,徐灏.金属学报,1992;28:A163) [18] Lemaitre J, Chobche J L. Mechanics of Solids Materials. Cambridge: Cambridge University Press, 1990: 65 [19] Yang G S. Damage Mechanics and Composite Material Damage. Beijing: National Defence Industry Press, 1995: 23(杨光松.损伤力学与复合材料损伤.北京:国防工业出版社,1995:23) [20] Tadeusz L. Int J Fatigue, 2001; 23: 467 [21] Wang R, Huang W B, Huang Z P. Introduction of Plasticity Mechanics. Beijing: Peking University Press, 1992: 1(王仁,黄文彬,黄筑平.塑性力学引论.北京:北京大学出版社,1992:11 [22] Wu D G, Zhang B. Calculus (I). Hangzhou: Zhejiang University Press, 1995: 183(吴迪光,张彬.微积分学(上).杭州:浙江大学出版社,1995:183) [23] Morrow J. ASTM STP 378, 1965: 45 [24] Golos K, Ellyin F. Theor Appl Fract Mech, 1987; 7: 169 [25] Zhao S B. Design for Fatigue Resistance. Beijing: China Machine Press, 1994: 100(赵少汴.抗疲劳设计.北京:机械工业出版社,1994:100) [26] Chen L, Jiang J L. J Mech Strength, 2005; 27(1): 121(陈凌,蒋家羚.机械强度,2005;27(1):121) [27] Chen L, Jiang J L. Pressure Vessel Technol, 2003; 20(10): 11 (陈凌,蒋家羚.压力容器,2003;20(10):11)T
JIANG Wenhui; YAO Xiangdong; GUAN Hengrong; HU Zhuangqi ( Institute of Metal Research; The Chinese Academy of Sciences; Shenyang 110015)(Shenyang Polytechnic University; Shenyang 110023). HIGH TEMPERATUER LOW CYCLE FATIGUE OF DZ40M COBALT-BASE SUPERALLOY[J]. 金属学报, 1998, 34(4): 378-383.
[13]
WU Ximao;Al Suhua;ZHANG Yun;WANG Zhonmang;HAN Xinglin (State Key Laboratory for Fatigue and Fracture of Materials; Institute of Metal Research; Chinese Academy of Sciences; Shenyang 110015) (Shenyang Polytechnic University. Shenyang 110023). THE LOW CYCLE FATIGUE BEHAVIOUR FOR 8090 Al-Li ALLOYS[J]. 金属学报, 1997, 33(7): 702-708.